Grain boundary relaxation behavior and phase stability of AlCrTiVx (x = 0, 0.5 and 1) high-entropy alloys

[1]  I. Beyerlein,et al.  Local slip resistances in equal-molar MoNbTi multi-principal element alloy , 2021, Acta Materialia.

[2]  G. Li,et al.  Strengthening mechanism of Nb addition in Fe–13Cr–4.5Al–2Mo alloys assessed by internal friction measurement , 2020 .

[3]  O. Eriksson,et al.  Chemical ordering controlled thermo-elasticity of AlTiVCr1-Nb high-entropy alloys , 2020 .

[4]  I. Beyerlein,et al.  Multiplicity of dislocation pathways in a refractory multiprincipal element alloy , 2020, Science.

[5]  Qinghua Zhang,et al.  Snoek-type damping performance in strong and ductile high-entropy alloys , 2020, Science Advances.

[6]  V. Natsik,et al.  Low temperature peak of internal friction in high entropy Al0.5CoCrCuFeNi alloy , 2020 .

[7]  Yunxia Gao,et al.  Effect of La addition on high-temperature order-disorder phase transformation in Fe − 18Ga alloy , 2019, Intermetallics.

[8]  Xuejun Huang,et al.  Lightweight AlCrTiV high-entropy alloys with dual-phase microstructure via microalloying , 2018, Journal of Materials Science.

[9]  Daniel B. Miracle,et al.  Development and exploration of refractory high entropy alloys—A review , 2018, Journal of Materials Research.

[10]  M. Gibson,et al.  Microstructure and corrosion properties of the low-density single-phase compositionally complex alloy AlTiVCr , 2018 .

[11]  M. Gibson,et al.  A lightweight single-phase AlTiVCr compositionally complex alloy , 2017 .

[12]  Jian Lu,et al.  High-entropy alloy: challenges and prospects , 2016 .

[13]  N. Stepanov,et al.  Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys , 2015 .

[14]  W. Ding,et al.  Twinning behavior and lattice rotation in a Mg-Gd-Y-Zr alloy under ballistic impact , 2015 .

[15]  Shichao Ma,et al.  Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer , 2014 .

[16]  Christoph Fahrenson,et al.  In-situ, ex-situ EBSD and (HR-)TEM analyses of primary, secondary and tertiary twin development in an Mg–4 wt%Li alloy , 2014 .

[17]  J. Yeh,et al.  High-Entropy Alloys: A Critical Review , 2014 .

[18]  G. Gottstein,et al.  Compensation effect in grain boundary internal friction , 2009 .

[19]  L. Yu,et al.  Internal friction of Niobium–Titanium–Oxygen alloys , 2007 .

[20]  O. Florêncio,et al.  Effect of interstitial impurities on internal friction measurements in niobium , 2004 .

[21]  I. Golovin,et al.  Snoek Relaxation in Fe–Cr Alloys and Interstitial–Substitutional Interaction , 1997 .

[22]  T. Kê,et al.  Grain Boundary Internal Friction Peaks Measured by the Forced Vibration Method , 1996 .

[23]  K. Tanaka On Zener relaxations in FeCr alloys , 1975 .

[24]  B. S. Berry,et al.  Anelastic Relaxation in Crystalline Solids , 1972 .

[25]  P. Barrand Grain boundary relaxations in iron-chromium alloys , 1966 .

[26]  G. Leak Grain Boundary Damping I: Pure Iron , 1961 .

[27]  T. Kê Internal Friction of Metals at Very High Temperatures , 1950 .

[28]  T. Kê Grain Boundary Relaxation and the Mechanism of Embrittlement of Copper by Bismuth , 1949 .

[29]  T. Kê Experimental Evidence of the Viscous Behavior of Grain Boundaries in Metals , 1947 .