Real zeros and partitions without singleton blocks

We prove that the generating polynomials of partitions of an n -element set into non-singleton blocks, counted by the number of blocks, have real roots only and we study the asymptotic behavior of the leftmost roots. We apply this information to find the most likely number of blocks. Also, we present a quick way to prove the corresponding statement for cycles of permutations in which each cycle is longer than a given integer r .

[1]  A. Bona,et al.  A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory , 2006 .

[2]  Paul A. Samuelson,et al.  How Deviant Can You Be , 1968 .

[3]  M. Bona Introduction to Enumerative Combinatorics , 2005 .

[4]  M. Ward The Representation of Stirling's Numbers and Stirling's Polynomials as Sums of Factorials , 1934 .

[5]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration , 1973, J. Comb. Theory A.

[6]  H. Wilf Mathematics for the Physical Sciences , 1976 .

[7]  J. Darroch On the Distribution of the Number of Successes in Independent Trials , 1964 .

[8]  Lane H. Clark,et al.  Asymptotic normality of the Ward numbers , 1999, Discret. Math..

[9]  B. C. Rennie,et al.  On stirling numbers of the second kind , 1969 .

[10]  L. Harper Stirling Behavior is Asymptotically Normal , 1967 .

[11]  E. Rodney Canfield,et al.  Central and Local Limit Theorems for the Coefficients of Polynomials of Binomial Type , 1977, J. Comb. Theory, Ser. A.

[12]  Miklós Bóna On a Balanced Property of Derangements , 2006, Electron. J. Comb..

[13]  Bruce E. Sagan,et al.  Inductive and injective proofs of log concavity results , 1988, Discret. Math..

[14]  Edward A. Bender,et al.  Log-Concavity and Related Properties of the Cycle Index Polynomials , 1996, J. Comb. Theory, Ser. A.

[15]  F. Brenti,et al.  Permutation enumeration symmetric functions, and unimodality , 1993 .

[16]  Herbert S. Wilf,et al.  Generating functionology , 1990 .

[17]  V. V. Menon On the Maximum of Stirling Numbers of the Second Kind , 1973, J. Comb. Theory, Ser. A.

[18]  E. R. Canfield,et al.  ON THE PROBLEM OF UNIQUENESS FOR THE MAXIMUM STIRLING NUMBER(S) OF THE SECOND KIND , 2001 .

[19]  N. D. Bruijn Asymptotic methods in analysis , 1958 .

[20]  István Mezö,et al.  The estimation of the zeros of the Bell and r-Bell polynomials , 2015, Appl. Math. Comput..