Evaluation of inverse algorithms in the analysis of magnetic flux leakage data

We evaluate the use of linear and nonlinear inverse algorithms (maximum entropy method, low resolution electromagnetic tomography, L/sub 1/ and L/sub 2/ norm methods) in the analysis of magnetic flux leakage (MFL) measurements commonly used for the detection of flaws and irregularities in gas and oil pipelines. We employed MFL data from a pipe with well-defined artificial surface breaking flaws at the internal and external wall. Except for the low-resolution electromagnetic tomography, all algorithms show, on average, similar accuracy in the flaw extent estimation. Maximum entropy and the L/sub 1/ norm have a tendency to yield better results for smaller flaws, while the L/sub 2/ norm performs slightly better for larger flaws. The errors of the flaw location estimation are comparable for the maximum entropy and the L/sub 2/ norm algorithm. The L/sub 1/ norm performs worse for those flaws situated on the internal pipe wall. Linear methods (L/sub 2/ norm) are easier to implement and require less computation time than nonlinear methods (maximum entropy method, L/sub 1/ norm). In conclusion, inverse algorithms potentially provide a powerful means for the detection and characterization of flaws in MFL data.

[1]  Hartmut Brauer,et al.  Der Einfluß der Randelementediskretisierung auf die Vorwärtsrechnung und das inverse Problem in Elektroencephalographie und Magnetoencephalographie - The Influence of Boundary Element Discretization on the Forward and Inverse Problem in Electroencephalography and Magnetoencephalography , 1997 .

[2]  Hellmut Hofmann Das elektromagnetische Feld , 1974 .

[3]  R. Aaron,et al.  Maximum entropy method for magnetoencephalography , 1997, IEEE Transactions on Biomedical Engineering.

[4]  Shinsuke Watanabe,et al.  Magnetic leakage field due to sub-surface defects in ferromagnetic specimens , 1995 .

[5]  G. McFall,et al.  A noise-tolerant solution to the magnetostatic inverse problem for nondestructive evaluation , 1993 .

[6]  Wilfried Wagner,et al.  Die nicht zerstörende Hartgewebs-Histotomographie durch CLSM als Voraussetzung für prospektive in vitro Testreihen am Beispiel der Schmelz-Demineralisation , 1997 .

[7]  Robert W. Brown,et al.  Magnetism: Principles and Applications , 2003 .

[8]  Satish S. Udpa,et al.  Magnetic flux leakage modeling for mechanical damage in transmission pipelines , 1998 .

[9]  P. Lorrain,et al.  Electromagnetic fields and waves , 1970 .

[10]  Jens Haueisen,et al.  Equivalent ellipsoid as an interpretation tool of extended current distributions in biomagnetic inverse problems , 2000 .

[11]  F. Forster On the way from the «Know-haw» to the «Know-why» in the magnetic leakage field method of nondestructive testing. I , 1985 .

[12]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[13]  M. Fuchs,et al.  An improved boundary element method for realistic volume-conductor modeling , 1998, IEEE Transactions on Biomedical Engineering.

[14]  Lalita Udpa,et al.  Developments in gas pipeline inspection technology , 1996 .

[15]  Rodney R. Saldanha,et al.  Inverse problem methodology and finite elements in the identification of cracks, sources, materials, and their geometry in inaccessible locations , 1991 .

[16]  Imaging flaws in magnetically permeable structures using the truncated generalized inverse on leakage fields , 1997 .

[17]  C. Hall Barbosa,et al.  Image reconstruction of spherical inclusions in ferromagnetic structures using the generalized inverse , 1998 .

[18]  K. Matsuura,et al.  Selective minimum-norm solution of the biomagnetic inverse problem , 1995, IEEE Transactions on Biomedical Engineering.

[19]  D. M. Schmidt,et al.  Bayesian inference applied to the electromagnetic inverse problem , 1998, Human brain mapping.

[20]  S B Palmer,et al.  The magnetic leakage field of surface-breaking cracks , 1986 .

[21]  W. Lord,et al.  Influences of velocity on signal responses of magnetostatic non-destructive testing tools: a prediction from finite element analysis , 1994 .

[22]  Frederick E. Petry,et al.  Principles and Applications , 1997 .

[23]  David L. Atherton,et al.  Calculations of the effects of anisotropy on magnetic flux leakage detector signals , 1996 .

[24]  K. Foulds Electromagnetic fields and waves. 3rd edn.: By P. Lorrain, D. P. Corson, and F. Lorrain. Pp. 754. W. H. Freeman, Oxford. 1988. Hardback £34.95; Paperback £19.95 , 1989 .

[25]  H. C. Lai,et al.  Automatic treatment of multiple wound coils in 3D finite element problems including multiply connected regions , 1996 .

[26]  M. Fuchs,et al.  Linear and nonlinear current density reconstructions. , 1999, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[27]  F. Förster New findings in the field of non-destructive magnetic leakage field inspection , 1986 .

[28]  F. A. Benson Book Review: Electromagnetic Fields and Waves, 3rd Ed. , 1989 .

[29]  W. Lord,et al.  Numerical modeling of moving probe effects for electromagnetic nondestructive evaluation , 1993 .

[30]  Jens Haueisen,et al.  Der Einfluss der Randelementediskretisierung auf die Vorwärtsrechnung und das inverse Problem in Elektroencephalographie und Magnetoencephalographie , 1997 .