Ultimate Scaling of High-κ Gate Dielectrics: Higher-κ or Interfacial Layer Scavenging?

Current status and challenges of aggressive equivalent-oxide-thickness (EOT) scaling of high-κ gate dielectrics via higher-κ (>20) materials and interfacial layer (IL) scavenging techniques are reviewed. La-based higher-κ materials show aggressive EOT scaling (0.5–0.8 nm), but with effective workfunction (EWF) values suitable only for n-type field-effect-transistor (FET). Further exploration for p-type FET-compatible higher-κ materials is needed. Meanwhile, IL scavenging is a promising approach to extend Hf-based high-κ dielectrics to future nodes. Remote IL scavenging techniques enable EOT scaling below 0.5 nm. Mobility-EOT trends in the literature suggest that short-channel performance improvement is attainable with aggressive EOT scaling via IL scavenging or La-silicate formation. However, extreme IL scaling (e.g., zero-IL) is accompanied by loss of EWF control and with severe penalty in reliability. Therefore, highly precise IL thickness control in an ultra-thin IL regime (<0.5 nm) will be the key technology to satisfy both performance and reliability requirements for future CMOS devices.

[1]  K. Kakushima,et al.  EOT of 0.62 nm and High Electron Mobility in La-silicate/Si Structure Based nMOSFETs Achieved by Utilizing Metal-Inserted Poly-Si Stacks and Annealing at High Temperature , 2012, IEEE Transactions on Electron Devices.

[2]  E. Cartier,et al.  Fundamental aspects of HfO2-based high-k metal gate stack reliability and implications on tinv-scaling , 2011, 2011 International Electron Devices Meeting.

[3]  T. Yasuda,et al.  Kelvin probe study on formation of electric dipole at direct-contact HfO2/Si interfaces , 2011 .

[4]  Martin M. Frank,et al.  Epitaxial strontium oxide layers on silicon for gate-first and gate-last TiN/HfO2 gate stack scaling , 2011 .

[5]  Tom Schram,et al.  Ultrathin EOT high-κ/metal gate devices for future technologies: Challenges, achievements and perspectives (invited) , 2011 .

[6]  E. Cartier,et al.  High temperature (1000 °C) compatible Y―La―Si―O silicate gate dielectric in direct contact with Si with 7.7 A equivalent oxide thickness , 2011 .

[7]  H. Bender,et al.  Gate-last vs. gate-first technology for aggressively scaled EOT logic/RF CMOS , 2011, 2011 Symposium on VLSI Technology - Digest of Technical Papers.

[8]  Chilhee Chung,et al.  Aggressively scaled high-k last metal gate stack with low variability for 20nm logic high performance and low power applications , 2011, 2011 Symposium on VLSI Technology - Digest of Technical Papers.

[9]  T. Ando,et al.  On the Electron and Hole Tunneling in a $ \hbox{HfO}_{2}$ Gate Stack With Extreme Interfacial-Layer Scaling , 2011, IEEE Electron Device Letters.

[10]  Barry P. Linder,et al.  Materials and Electrical Characterization of Physical Vapor Deposited LaxLu1-xO3 Thin Films on 300 mm Silicon , 2011 .

[11]  A. Kellock,et al.  Maximized Benefit of La–Al–O Higher-$k$ Gate Dielectrics by Optimizing the La/Al Atomic Ratio , 2011, IEEE Electron Device Letters.

[12]  V. Narayanan,et al.  Epitaxial SrO interfacial layers for HfO2–Si gate stack scaling , 2011 .

[13]  Y. Morita,et al.  Preparation of epitaxial HfO2 film (EOT=0.5 nm) on Si substrate using atomic-layer deposition of amorphous film and rapid thermal crystallization (RTC) in an abrupt temperature gradient , 2010, 2010 International Electron Devices Meeting.

[14]  Jack C. Lee,et al.  Scaling equivalent oxide thickness with flat band voltage (VFB) modulation using in situ Ti and Hf interposed in a metal/high-k gate stack , 2010 .

[15]  Chang Seo Park,et al.  Origin of the Flatband-Voltage Roll-Off Phenomenon in Metal/High- $k$ Gate Stacks , 2010, IEEE Transactions on Electron Devices.

[16]  E. Nowak,et al.  Crystallographic-Orientation-Dependent Gate-Induced Drain Leakage in Nanoscale MOSFETs , 2010, IEEE Transactions on Electron Devices.

[17]  V. Narayanan,et al.  Physical origins of mobility degradation in extremely scaled SiO2/HfO2 gate stacks with La and Al induced dipoles , 2010 .

[18]  Takashi Ando,et al.  Temperature-dependent La- and Al-induced dipole behavior monitored by femtosecond pump/probe photoelectron spectroscopy , 2010 .

[19]  T. Ando,et al.  Low Threshold Voltage and High Mobility N-Channel Metal–Oxide–Semiconductor Field-Effect Transistor Using Hf–Si/HfO2 Gate Stack Fabricated by Gate-Last Process , 2010 .

[20]  T. Ando,et al.  Understanding mobility mechanisms in extremely scaled HfO2 (EOT 0.42 nm) using remote interfacial layer scavenging technique and Vt-tuning dipoles with gate-first process , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[21]  S. Kawanaka,et al.  Correlation between low-field mobility and high-field carrier velocity in quasi-ballistic-transport MISFETS scaled down to Lg=30 nm , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[22]  B. Parvais,et al.  Ultra low-EOT (5 Å) gate-first and gate-last high performance CMOS achieved by gate-electrode optimization , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[23]  Eduard A. Cartier,et al.  Interaction of La2O3 capping layers with HfO2 gate dielectrics , 2009 .

[24]  A. Kerber,et al.  Voltage Ramp Stress for Bias Temperature Instability Testing of Metal-Gate/High- $k$ Stacks , 2009, IEEE Electron Device Letters.

[25]  T. Ando,et al.  Mechanism of Carrier Mobility Degradation Induced by Crystallization of HfO2 Gate Dielectrics , 2009 .

[26]  A. Kinoshita,et al.  Effect of Composition in Ternary La–Al–O Films on Flat-Band Voltage for Application to Dual High-k Gate Dielectric Technology , 2009 .

[27]  Akira Toriumi,et al.  Origin of electric dipoles formed at high-k/SiO2 interface , 2009 .

[28]  E. Cartier,et al.  Reliability Challenges for CMOS Technology Qualifications With Hafnium Oxide/Titanium Nitride Gate Stacks , 2009, IEEE Transactions on Device and Materials Reliability.

[29]  J. Robertson Maximizing performance for higher K gate dielectrics , 2008 .

[30]  Hemanth Jagannathan,et al.  Engineering High Dielectric Constant Materials for Band-Edge CMOS Applications , 2008 .

[31]  A. Toriumi,et al.  Experimental evidence for the flatband voltage shift of high-k metal-oxide-semiconductor devices due to the dipole formation at the high-k∕SiO2 interface , 2008 .

[32]  Husam N. Alshareef,et al.  Dipole model explaining high-k/metal gate field effect transistor threshold voltage tuning , 2008 .

[33]  T. Nabatame,et al.  Gate-First Processed FUSI/HfO2/HfSiOx/Si MOSFETs with EOT=0.5 nm - Interfacial Layer Formation by Cycle-by-Cycle Deposition and Annealing , 2007, 2007 IEEE International Electron Devices Meeting.

[34]  R. Chau,et al.  A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging , 2007, 2007 IEEE International Electron Devices Meeting.

[35]  T. Nabatame,et al.  Intrinsic Origin of Electron Mobility Reduction in High-k MOSFETs - From Remote Phonon to Bottom Interface Dipole Scattering , 2007, 2007 IEEE International Electron Devices Meeting.

[36]  Akira Toriumi,et al.  Study of La-Induced Flat Band Voltage Shift in Metal/HfLaOx/SiO2/Si Capacitors , 2007 .

[37]  T. Nabatame,et al.  VFB Roll-off in HfO2 Gate Stack after High Temperature Annealing Process - A Crucial Role of Out-diffused Oxygen from HfO2 to Si , 2007, 2007 IEEE Symposium on VLSI Technology.

[38]  V. Narayanan,et al.  Oxygen vacancies in high dielectric constant oxide-semiconductor films. , 2007, Physical review letters.

[39]  Anabela Veloso,et al.  Reliability screening of high-k dielectrics based on voltage ramp stress , 2007, Microelectron. Reliab..

[40]  P. Kirsch,et al.  Mobility and charge trapping comparison for crystalline and amorphous HfON and HfSiON gate dielectrics , 2006 .

[41]  Kikuo Yamabe,et al.  Modified Oxygen Vacancy Induced Fermi Level Pinning Model Extendable to P-Metal Pinning , 2006 .

[42]  K. Uchida,et al.  Universal Relationship between Low-Field Mobility and High-Field Carrier Velocity in High-K and SiO2 Gate Dielectric MOSFETs , 2006, 2006 International Electron Devices Meeting.

[43]  M. Ieong,et al.  Band-Edge High-Performance High-k/Metal Gate n-MOSFETs Using Cap Layers Containing Group IIA and IIIB Elements with Gate-First Processing for 45 nm and Beyond , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[44]  T. Ando,et al.  High Performance Dual Metal Gate CMOS with High Mobility and Low Threshold Voltage Applicable to Bulk CMOS Technology , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[45]  A. Toriumi,et al.  Dielectric constant enhancement due to Si incorporation into HfO2 , 2006 .

[46]  K. Maitra,et al.  Process optimization for high electron mobility in nMOSFETs with aggressively scaled HfO/sub 2//metal stacks , 2006, IEEE Electron Device Letters.

[47]  G. Bersuker,et al.  Gate first high-k/metal gate stacks with zero SiOx interface achieving EOT=0.59nm for 16nm application , 2006, 2009 Symposium on VLSI Technology.

[48]  E. Cartier,et al.  Extremely scaled gate-first high-k/metal gate stack with EOT of 0.55 nm using novel interfacial layer scavenging techniques for 22nm technology node and beyond , 2006, 2009 Symposium on VLSI Technology.

[49]  M. Belyansky,et al.  High performance 32nm SOI CMOS with high-k/metal gate and 0.149µm2 SRAM and ultra low-k back end with eleven levels of copper , 2006, 2009 Symposium on VLSI Technology.

[50]  N. Fukushima,et al.  Ultra-thin (EOT=3/spl Aring/) and low leakage dielectrics of La-alminate directly on si substrate fabricated by high temperature deposition , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[51]  D. Gilmer,et al.  Microstructure modified HfO/sub 2/ using Zr addition with Ta/sub x/ C/sub y/ gate for improved device performance and reliability , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[52]  Jong-Ho Lee,et al.  A highly manufacturable MIPS (metal inserted poly-Si stack) technology with novel threshold voltage control , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[53]  Changhwan Choi,et al.  Fabrication of TaN-gated ultra-thin MOSFETs (EOT <1.0 nm) with HfO/sub 2/ using a novel oxygen scavenging process for sub 65 nm application , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[54]  Akira Toriumi,et al.  Permittivity increase of yttrium-doped HfO2 through structural phase transformation , 2004 .

[55]  Krishna C. Saraswat,et al.  Engineering chemically abrupt high-k metal oxide∕silicon interfaces using an oxygen-gettering metal overlayer , 2004 .

[56]  D. Hisamoto,et al.  Unified mobility model for high-/spl kappa/ gate stacks [MISFETs] , 2003, IEEE International Electron Devices Meeting 2003.

[57]  H. Satake,et al.  Additional scattering effects for mobility degradation in Hf-silicate gate MISFETs , 2002, Digest. International Electron Devices Meeting,.

[58]  Darrell G. Schlom,et al.  A Thermodynamic Approach to Selecting Alternative Gate Dielectrics , 2002 .

[59]  L. Ragnarsson,et al.  Ultrathin high-K gate stacks for advanced CMOS devices , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[60]  E. Cartier,et al.  Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with a high-κ insulator: The role of remote phonon scattering , 2001 .

[61]  M. Lundstrom On the mobility versus drain current relation for a nanoscale MOSFET , 2001, IEEE Electron Device Letters.

[62]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[63]  E. Cartier,et al.  Formation of a stratified lanthanum silicate dielectric by reaction with Si(001) , 2001 .

[64]  D. Antoniadis,et al.  On experimental determination of carrier velocity in deeply scaled NMOS: how close to the thermal limit? , 2001, IEEE Electron Device Letters.

[65]  G. Lucovsky,et al.  The effects of interfacial sub-oxide transition regions and monolayer level nitridation on tunneling currents in silicon devices , 2000, IEEE Electron Device Letters.

[66]  Douglas A. Buchanan,et al.  Scaling the gate dielectric: Materials, integration, and reliability , 1999, IBM J. Res. Dev..

[67]  D. Schlom,et al.  Thermodynamic stability of binary oxides in contact with silicon , 1996 .

[68]  S. Takagi,et al.  On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration , 1994 .

[69]  K. Natori Ballistic metal-oxide-semiconductor field effect transistor , 1994 .

[70]  Tso-Ping Ma,et al.  Scattering of silicon inversion layer electrons by metal/oxide interface roughness , 1987 .

[71]  L. Napolitano Materials , 1984, Science.

[72]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[73]  S. Sugahara,et al.  Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance , 2008, IEEE Transactions on Electron Devices.