Influence of data size on the reliability assessment of creep life of grade 91 steel

[1]  Yong-Bum Lee,et al.  High temperature design of finned-tube sodium-to-air heat exchanger in a sodium test loop , 2013 .

[2]  Woo-Gon Kim,et al.  Reliability assessment of creep rupture life for Gr. 91 steel , 2013 .

[3]  Woo-Gon Kim,et al.  Methodologies for Long‐Term Creep Life Extrapolation of Gr. 91 Steel , 2013 .

[4]  Y. Lejeail,et al.  Creep behaviour and failure modelling of modified 9Cr1Mo steel , 2012 .

[5]  T. Jayakumar,et al.  Long-term creep-rupture strength prediction for modified 9Cr–1Mo ferritic steel and type 316L(N) austenitic stainless steel , 2012 .

[6]  Kouichi Maruyama,et al.  Long-term microstructural degradation and creep strength in Gr.91 steel , 2011 .

[7]  B. K. Choudhary,et al.  Creep behaviour of modified 9Cr–1Mo ferritic steel , 2011 .

[8]  Dae-Whan Kim,et al.  Reliability Prediction of Long-term Creep Strength of Gr. 91 Steel for Next Generation Reactor Structure Materials , 2011 .

[9]  Baldev Raj,et al.  A perspective on creep and fatigue issues in sodium cooled fast reactors , 2010 .

[10]  Kazuhiro Kimura,et al.  Creep strength of high chromium steel with ferrite matrix , 2010 .

[11]  Gyeong-Hoi Koo,et al.  Generation of isochronous stress-strain curves with a nonlinear least square fitting method for modified 9Cr-1Mo steel , 2009 .

[12]  Jie Zhao,et al.  Introduction of SCRI model for creep rupture life assessment , 2009 .

[13]  Tai Asayama,et al.  Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR , 2007 .

[14]  Milan Svoboda,et al.  Long-term creep behavior of 9–12%Cr power plant steels ☆ , 2003 .

[15]  Woo-Gon Kim,et al.  Evaluation of Monkman-Grant parameters for type 316LN and modified 9Cr-Mo stainless steels , 2002 .

[16]  Martin Prager,et al.  The Omega Method–An Engineering Approach to Life Assessment , 2000 .

[17]  D. A. Canonico,et al.  Evaluation of T91 after 130,000 hours in service , 1998 .

[18]  M. Prager,et al.  Development of the MPC Omega Method for Life Assessment in the Creep Range , 1995 .

[19]  J. E. Dorn,et al.  CORRELATIONS OF RUPTURE DATA FOR METALS AT ELEVATED TEMPERATURES , 1953 .

[20]  S. S. Manson,et al.  A linear time-temperature relation for extrapolation of creep and stress-rupture data , 1953 .

[21]  F. Larson,et al.  A Time-Temperature Relationship for Rupture and Creep Stresses , 1952, Journal of Fluids Engineering.

[22]  Yusuke Minami,et al.  Premature Creep Rupture and Overestimation of Rupture Life in Modified 9Cr–1Mo Steel , 2010 .

[23]  Fujimitsu Masuyama,et al.  Creep rupture life and design factors for high-strength ferritic steels , 2007 .

[24]  S. C. Chetal,et al.  Selection of materials for prototype fast breeder reactor , 2003 .

[25]  Amods Korea Atomic Energy Research Institute , 2000 .

[26]  B. Wilshire,et al.  The θ projection concept—A model-based approach to design and life extension of engineering plant , 1992 .