Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias

[1]  S. Priori,et al.  Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. , 1995, Circulation.

[2]  F. Charpentier,et al.  Mapping of a gene for long QT syndrome to chromosome 4q25-27. , 1995, American journal of human genetics.

[3]  S. Priori,et al.  Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. , 1995, Human molecular genetics.

[4]  K. Klinger,et al.  Increased exon-trapping efficiency through modifications to the pSPL3 splicing vector. , 1995, Gene.

[5]  F. Collins,et al.  Localization of Romano-Ward long QT syndrome gene, LQT1, to the interval between tyrosine hydroxylase (TH) and D11S1349. , 1995, American journal of human genetics.

[6]  G. Robertson,et al.  HERG, a human inward rectifier in the voltage-gated potassium channel family. , 1995, Science.

[7]  M. Sanguinetti,et al.  A mechanistic link between an inherited and an acquird cardiac arrthytmia: HERG encodes the IKr potassium channel , 1995, Cell.

[8]  Arthur J Moss,et al.  SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome , 1995, Cell.

[9]  E. Green,et al.  A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome , 1995, Cell.

[10]  M. Keating,et al.  Isolation of P1 insert ends by direct sequencing. , 1994, BioTechniques.

[11]  Cécile Fizames,et al.  The 1993–94 Généthon human genetic linkage map , 1994, Nature Genetics.

[12]  X. Chen,et al.  Genomic organization, nucleotide sequence, biophysical properties, and localization of the voltage-gated K+ channel gene KCNA4/Kv1.4 to mouse chromosome 2/human 11p14 and mapping of KCNC1/Kv3.1 to mouse 7/human 11p14.3-p15.2 and KCNA1/Kv1.1 to human 12p13. , 1994, Genomics.

[13]  D. Church,et al.  Isolation of genes from complex sources of mammalian genomic DNA using exon amplification , 1994, Nature Genetics.

[14]  A. Moss,et al.  Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity , 1994, Nature Genetics.

[15]  R. MacKinnon,et al.  Functional stoichiometry of Shaker potassium channel inactivation. , 1993, Science.

[16]  A. Tanigami,et al.  Mapping of 262 DNA markers into 24 intervals on human chromosome 11. , 1992, American journal of human genetics.

[17]  Robert Lemery,et al.  Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction. , 1992, The New England journal of medicine.

[18]  M. Leppert,et al.  Consistent linkage of the long-QT syndrome to the Harvey ras-1 locus on chromosome 11. , 1991, American journal of human genetics.

[19]  Lawrence Salkoff,et al.  Shaker, Shal, Shab, and Shaw express independent K+ current systems , 1991, Neuron.

[20]  M. Leppert,et al.  Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. , 1991, Science.

[21]  P. Sharp,et al.  Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. MacKinnon Determination of the subunit stoichiometry of a voltage-activated potassium channel , 1991, Nature.

[23]  F. Collins,et al.  Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. , 1991, Nucleic acids research.

[24]  A. Tanigami,et al.  Isolation and mapping of 62 new RFLP markers on human chromosome 11. , 1991, American journal of human genetics.

[25]  M V Olson,et al.  Systematic screening of yeast artificial-chromosome libraries by use of the polymerase chain reaction. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. C. Chinault,et al.  Rapid identification of yeast artificial chromosome clones by matrix pooling and crude lysate PCR. , 1990, Nucleic acids research.

[27]  N. Sternberg,et al.  Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. Hartl,et al.  Genetic applications of an inverse polymerase chain reaction. , 1988, Genetics.

[29]  O. Pongs,et al.  Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. , 1988, The EMBO journal.

[30]  D. Levy,et al.  Circadian variation in the incidence of sudden cardiac death in the Framingham Heart Study population. , 1987, The American journal of cardiology.

[31]  D. Zipes Proarrhythmic effects of antiarrhythmic drugs. , 1987, The American journal of cardiology.

[32]  R. D'Agostino,et al.  Sudden death risk in overt coronary heart disease: the Framingham Study. , 1987, American heart journal.

[33]  J. Ott,et al.  Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. , 1985, American journal of human genetics.

[34]  A. Malliani,et al.  The long Q-T syndrome. , 1975, American heart journal.

[35]  A. Moss,et al.  Unilateral cervicothoracic sympathetic ganglionectomy for the treatment of long QT interval syndrome. , 1971, The New England journal of medicine.

[36]  C. Romano CONGENITAL CARDIAC ARRHYTHMIA. , 1965, Lancet.

[37]  Ward Oc A NEW FAMILIAL CARDIAC SYNDROME IN CHILDREN. , 1964 .

[38]  A. Jervell,et al.  Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval, and sudden death , 1957 .