Evaluación del estado micorrícico de plántulas de Pinus ponderosa producidas bajo fertirriego, sin manejo de la micorrización Evaluation of the mycorrhizal condition of ponderosa pine seedlings produced with high fertilization levels and lacking mycorrhizal management

SUMMARY Several reports of tree planters from the Patagonian Andes region of Chubut (Argentina) have pointed out that seedlings of Pinus ponderosa, obligate ectotrophic species, produced in greenhouses with high levels of fertilization without ectomycorrhizal inoculum applications, showed low or null ectomycorrhizal infection at the end of nursery stage but had excellent performance in plantation sites during the first years. This study was planned to evaluate if those seedlings develop mycorrhizal associations once installed in plantations, and if those associations are originated from inoculums acquired in the nursery. Three evaluations were done: 1) analyses of seedlings at the end of nursery period, to evaluate their initial mycorrhizal condition, 2) analyses after 6 month, with seedlings transplanted into pots with semi-sterile substrate, to establish if there exists inoculum in the system that did not express because of the high fertilization levels and, 3) analyses after 24 month, with seedlings planted in a field distant from any source of ectomycorrhizal inoculum, to evaluate the associations developed in the planting site. Results showed that: 1) the studied nursery produced seedlings with null or very low levels of mycorrhization, with low morphotypes’ richness; 2) seedlings showed very high mycorrhizal percentages after 6 months (under greenhouse conditions) and after 24 months (in field conditions); 3) different mycorrhizal fungi behave differently under fertilization. The analyzed nursery fortuitously incorporated mycorrhizal inoculum that rapidly colonized seedlings, immediately after fertilization was interrupted. This fact demonstrates that the hypothesis that ponderosa pine seedlings can establish and grow in anectotrophic environments without EM symbioses is false.

[1]  O. Alizadeh,et al.  Mycorrhizal Symbiosis , 1986, Forest Science.

[2]  M. Garbelotto,et al.  A strong species-area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. , 2007, Ecology letters.

[3]  M. Rajchenberg,et al.  Ectomycorrhizal fungi associated with ponderosa pine and Douglas-fir: a comparison of species richness in native western North American forests and Patagonian plantations from Argentina , 2007, Mycorrhiza.

[4]  Daniel. Martínez,et al.  Influencia del régimen de fertilización y del momento de inoculación en la micorrización de Pinus ponderosa en la etapa de vivero , 2007 .

[5]  Andrew F. S. Taylor,et al.  Fungal communities in mycorrhizal roots of conifer seedlings in forest nurseries under different cultivation systems, assessed by morphotyping, direct sequencing and mycelial isolation , 2005, Mycorrhiza.

[6]  R. Edmonds,et al.  Does proximity to mature trees influence ectomycorrhizal fungus communities of Douglas-fir seedlings? , 2005, The New phytologist.

[7]  M. Rajchenberg,et al.  Mycorrhizal fungi in Pinus ponderosa introduced in Central Patagonia (Argentina) , 2005 .

[8]  J. Horton,et al.  Hyperdiversity of ectomycorrhizal fungus assemblages on oak seedlings in mixed forests in the southern Appalachian Mountains , 2005, Molecular ecology.

[9]  D. Read,et al.  Mycorrhizas in ecosystems , 1991, Experientia.

[10]  P. Chakravarty,et al.  Effect of fertilization on growth and ectomycorrhizal development of container-grown and bare-root nursery conifer seedlings , 2001, New forests.

[11]  S. Fontenla,et al.  Mycorrhizal associations in the Patagonian steppe, Argentina , 2001, Plant and Soil.

[12]  C. González-Murua,et al.  Effectiveness of mycorrhizal inoculation in the nursery on growth and water relations of Pinus radiata in different water regimes. , 2004, Tree physiology.

[13]  J. Owens,et al.  Above- and below-ground growth of white spruce seedlings with roots divided into different substrates with or without controlled-release fertilizer , 2004, Plant and Soil.

[14]  Melanie D. Jones,et al.  Carbon and Nutrient Fluxes Within and Between Mycorrhizal Plants , 2003 .

[15]  K. Egger,et al.  Ectendomycorrhizal associations – characteristics and functions , 2001, Mycorrhiza.

[16]  A. Jumpponen Dark septate endophytes – are they mycorrhizal? , 2001, Mycorrhiza.

[17]  R. Agerer Exploration types of ectomycorrhizae , 2001, Mycorrhiza.

[18]  J. Vangronsveld,et al.  Ectomycorrhizal protection of Pinus sylvestris against copper toxicity , 2001 .

[19]  W. Colgan,et al.  Diversity and productivity of hypogeous fungal sporocarps in a variably thinned Douglas-fir forest , 1999 .

[20]  J. Cairney,et al.  Ectomycorrhizal Fungi Key Genera in Profile , 1999, Springer Berlin Heidelberg.

[21]  S. Berch,et al.  A manual of concise descriptions of North American ectomycorrhizae , 1998, Mycorrhiza.

[22]  P. Rosso,et al.  Root associations in Austrocedrus forests and seasonal dynamics of arbuscular mycorrhizas , 1998, Mycorrhiza.

[23]  Stenstroem,et al.  Le rôle des mycorhizes dans la protection des arbres forestiers contre les agents pathogènes du sol , 1997 .

[24]  R. Agerer Colour Atlas of Ectomycorrhizae , 1997 .

[25]  F. L. Tacon,et al.  Mycorhizes, pépinières et plantations forestières en France. , 1997 .

[26]  T. Grove,et al.  Working with Mycorrhizas in Forestry and Agriculture , 1996 .

[27]  J. Trappe,et al.  Hypogeous fungal production in mature Douglas-fir forest fragments and surrounding plantations and its relation to coarse woody debris and animal mycophagy , 1994 .

[28]  R. Godoy,et al.  Estatus micotrófico de la flora vascular en bosques de coníferas nativas del sur de Chile. , 1994 .

[29]  R. Danielson Temporal changes and effects of amendments on the occurrence of sheating (ecto-) mycorrhizas of conifers growing in oil sands tailings and coal spoil , 1991 .

[30]  T. Unestam,et al.  VARIATION IN FIELD RESPONSE OF PINUS SYLVESTRIS TO NURSERY INOCULATION WITH FOUR DIFFERENT ECTOMYCORRHIZAL FUNGI , 1990 .

[31]  P. Chakravarty,et al.  Effect of fertilization on seedling growth, ectomycorrhizal symbiosis, and nutrient uptake in Larix laricina , 1990 .

[32]  J. Fortin,et al.  Growth and ectomycorrhiza formation of containerized black spruce seedlings as affected by nitrogen fertilization, Inoculum type, and symbiont , 1988 .

[33]  P. Mikola Ectendomycorrhiza of conifers. , 1988 .

[34]  J. Fortin,et al.  Growth of containerized jack pine seedlings inoculated with different ectomycorrhizal fungi under a controlled fertilization schedule , 1987 .

[35]  J. Trappe,et al.  Seasonal hypogeous sporocarp production in a western Oregon Douglas-fir stand , 1987 .

[36]  Robert G. D. Steel,et al.  Bioestadística : principios y procedimientos , 1985 .

[37]  D. Parkinson,et al.  The effectiveness of mycelial slurries of mycorrhizal fungi for the inoculation of container-grown jack pine seedlings , 1984 .

[38]  J. Chamard,et al.  Use of the ectomycorrhizal fungus Laccarialaccata in forestry. II. Effects of fertilizer forms and levels on ectomycorrhizal development and growth of container-grown Douglas-fir and ponderosa pine seedlings , 1983 .

[39]  J. Trappe Selection of Fungi for Ectomycorrhizal Inoculation in Nurseries , 1977 .

[40]  R. Fogel Ecological studies of hypogeous fungi. II. Sporocarp phenology in a western Oregon Douglas Fir stand , 1976 .

[41]  T. Kozlowski,et al.  Ectomycorrhizae: their ecology and physiology , 1973 .

[42]  S. D. Garrett Fungal Communities , 1967, Nature.