Infrared to visible energy upconversion in Er3+‐doped oxide glass

Intense green emission was observed at room temperature from the 4S3/2 level of Er3+ doped in a multielement oxide glass when its 4I9/2 level was resonantly excited with a near‐infrared laser beam of 797 nm. Our studies indicate that energy transfer and excited state absorption are responsible for the generation of upconverted green emission from the sample. The upconversion efficiency is found to be 0.14%.

[1]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[2]  Roger M. Macfarlane,et al.  Blue and green cw upconversion lasing in Er:YLiF4 , 1990 .

[3]  R. Macfarlane,et al.  Green infrared‐pumped erbium upconversion laser , 1987 .

[4]  P. Xie,et al.  Visible cooperative upconversion laser in Er:LiYF(4). , 1992, Optics letters.

[5]  H. Jenssen,et al.  Upconversion versus Pr-deactivation for efficient 3 mu m laser operation in Er , 1992 .

[6]  T. Főrster,et al.  10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation , 1959 .

[7]  L. Johnson,et al.  Infrared‐Pumped Visible Laser , 1971 .

[8]  B. R. Reddy,et al.  Energy transfer in LaF3: R3+, Pr3+ (where R = Nd, Dy) , 1982 .

[9]  M. Weber Selective Excitation and Decay of Er 3 + Fluorescence in La F 3 , 1967 .

[10]  H. Moos,et al.  Multiphonon orbit-lattice relaxation in LaBr sub 3, LaCl sub 3, and LaF sub 3. , 1967 .

[11]  K. Bennett,et al.  CW Room-Temperature Blue Upconversion Laser , 1992 .

[12]  A. Gharavi,et al.  Visible to UV up‐conversion in Er3+ doped cadmium chloride and zinc chloride glasses , 1992 .

[13]  M. Birnbaum,et al.  Threefold upconversion laser at 0.85, 1.23, and 1.73 μm in Er:YLF pumped with a 1.53 μm Er glass laser , 1989 .

[14]  A Von Lehmen,et al.  Guided blue and green upconversion fluorescence in an erbium-ytterbium-containing silicate glass. , 1992, Applied optics.

[15]  Qu Li,et al.  Frequency upconversion in Er3+- and Yb3+Er3+-doped silica fibers , 1992 .