A Numerical Method for the Inverse Sturm–Liouville Problem
暂无分享,去创建一个
In this paper we present a method for solving a form of the inverse Sturm–Liouville problem. The basis of the method is to modify the given differential eigenvalues so that the $N \times N$ tridiagonal matrix eigenvalue problem recovered from the first N eigenvalues can (after a suitable transformation) be identified with the finite difference approximation of the required differential eigenvalue problem. Numerical results are presented to illustrate the effectiveness of this method.
[1] Paul Morel,et al. Des algorithmes pour le problème inverse des valeurs propres , 1976 .
[2] Ole Hald,et al. The inverse Sturm-Liouville problem and the Rayleigh-Ritz method , 1978 .
[3] Göran Borg. Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe , 1946 .