Reliably Estimating the Diffusion Orientation Distribution Function from High Angular Resolution Diffusion Imaging Data

This paper describes an automated model selection method for analysing the relationship between the order of the spherical harmonic basis functions used to fit high angular resolution diffusion imaging (HARDI) data and the accuracy of the fitting results. The method performs statistical inference on the spherical harmonic expansion coefficients and uses a backward elimination procedure to remove those basis functions that contribute the least to explaining the data. The proposed method improves the accuracy of higher order spherical harmonic expansion while preserving its shape adaptation properties.

[1]  D. Parker,et al.  Analysis of partial volume effects in diffusion‐tensor MRI , 2001, Magnetic resonance in medicine.

[2]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[3]  L. Frank Characterization of anisotropy in high angular resolution diffusion‐weighted MRI , 2002, Magnetic resonance in medicine.

[4]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[5]  V. Wedeen,et al.  Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI , 2000 .

[6]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[7]  A. W. Anderson,et al.  Sub-voxel measurement of fiber orientation using high angular resolution diffusion tensor imaging , 2002 .

[8]  Li Bai,et al.  Brain tractography using Q-ball imaging and graph theory: Improved connectivities through fibre crossings via a model-based approach , 2010, NeuroImage.

[9]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[10]  M. Moseley,et al.  Magnetic Resonance in Medicine 51:924–937 (2004) Characterizing Non-Gaussian Diffusion by Using Generalized Diffusion Tensors , 2022 .

[11]  Maxime Descoteaux,et al.  Spherical wavelet transform for ODF sharpening , 2010, Medical Image Anal..

[12]  Li Bai,et al.  Fuzzy anatomical connectedness of the brain using single and multiple fibre orientations estimated from diffusion MRI , 2010, Comput. Medical Imaging Graph..

[13]  T. Mareci,et al.  Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.

[14]  Yogesh Rathi,et al.  On approximation of orientation distributions by means of spherical ridgelets , 2008, ISBI.

[15]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[16]  S. Arridge,et al.  Detection and modeling of non‐Gaussian apparent diffusion coefficient profiles in human brain data , 2002, Magnetic resonance in medicine.

[17]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[18]  Li Bai,et al.  A Bayesian method with reparameterization for diffusion tensor imaging , 2008, SPIE Medical Imaging.