Catalytic and Structural Studies of Hoveyda–Grubbs Type Pre-Catalysts Bearing Modified Ether Ligands

Catalytic and crystallographic studies of Hoveyda–Grubbs type pre-catalysts M51TM and M52TM were performed. These two new instruments in the olefin metathesis catalyst toolbox were shown to be active at ambient temperature and at low loading, leading to clean formation of ring-closing, ring-closing enyne and cross metathesis products.

[1]  J. Dubois,et al.  Tandem catalytic acrylonitrile cross-metathesis and hydrogenation of nitriles with ruthenium catalysts: direct access to linear α,ω-aminoesters from renewables. , 2012, ChemSusChem.

[2]  L. Cavallo,et al.  A latent ruthenium based olefin metathesis catalyst with a sterically demanding NHC ligand , 2012 .

[3]  B. Weckhuysen,et al.  On the Polymerization Behavior of Telomers: Metathesis versus Thiol–Ene Chemistry , 2012 .

[4]  H. Plenio,et al.  On the mechanism of the initiation reaction in Grubbs-Hoveyda complexes. , 2012, Journal of the American Chemical Society.

[5]  Y. Vidavsky,et al.  Chelating alkylidene ligands as pacifiers for ruthenium catalysed olefin metathesis. , 2012, Dalton transactions.

[6]  M. Meier,et al.  Copolymers derived from rapeseed derivatives via ADMET and thiol-ene addition , 2011 .

[7]  M. Meier,et al.  Terpene-Based Renewable Monomers and Polymers via Thiol–Ene Additions , 2011 .

[8]  Karol Grela,et al.  Rational Design and Evaluation of Upgraded Grubbs/Hoveyda Olefin Metathesis Catalysts: Polyfunctional Benzylidene Ethers on the Test Bench , 2011 .

[9]  M. Meier,et al.  4-Vinylbenzenesulfonic acid adduct of epoxidized soybean oil: Synthesis, free radical and ADMET polymerizations , 2011 .

[10]  D. Krogstad,et al.  Manipulating micellar environments for enhancing transition metal-catalyzed cross-couplings in water at room temperature. , 2011, The Journal of organic chemistry.

[11]  A. Slawin,et al.  Phosphites as ligands in ruthenium-benzylidene catalysts for olefin metathesis. , 2011, Chemical communications.

[12]  C. Slugovc,et al.  As low as reasonably achievable catalyst loadings in the cross metathesis of olefins with ethyl acrylate , 2011 .

[13]  M. Buchmeiser,et al.  Pseudo-Halide and Nitrate Derivatives of Grubbs and Grubbs–Hoveyda Initiators: Some Structural Features Related to the Alternating Ring-Opening Metathesis Copolymerization of Norborn-2-ene with Cyclic Olefins , 2011 .

[14]  César A. Urbina-Blanco,et al.  Olefin metathesis featuring ruthenium indenylidene complexes with a sterically demanding NHC ligand. , 2011, Chemistry.

[15]  C. Slugovc,et al.  Pyridine as trigger for chloride isomerisation in chelated ruthenium benzylidene complexes: implications for olefin metathesis. , 2011, Chemical communications.

[16]  M. Meier,et al.  Introducing multicomponent reactions to polymer science: Passerini reactions of renewable monomers. , 2011, Journal of the American Chemical Society.

[17]  M. Meier,et al.  About the activity and selectivity of less well-known metathesis catalysts during ADMET polymerizations , 2010, Beilstein journal of organic chemistry.

[18]  H. Plenio,et al.  How important is the release-return mechanism in olefin metathesis? , 2010, Chemistry.

[19]  A. Slawin,et al.  Mixed N-heterocyclic carbene/phosphite ruthenium complexes: towards a new generation of olefin metathesis catalysts. , 2010, Chemical communications.

[20]  H. Plenio,et al.  Probing the mechanism of olefin metathesis in Grubbs-Hoveyda and Grela type complexes. , 2010, Angewandte Chemie.

[21]  F. Verpoort,et al.  Ruthenium-based olefin metathesis catalysts derived from alkynes. , 2010, Chemical reviews.

[22]  R. Grubbs,et al.  Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. , 2010, Chemical reviews.

[23]  S. Nolan,et al.  Towards Long‐Living Metathesis Catalysts by Tuning the N‐Heterocyclic Carbene (NHC) Ligand on Trifluoroacetamide‐Activated Boomerang Ru Complexes , 2009 .

[24]  K. Grela,et al.  Ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands. , 2009, Chemical reviews.

[25]  S. Nolan,et al.  Ruthenium-indenylidene complexes: powerful tools for metathesis transformations. , 2008, Chemical communications.

[26]  D. Usanov,et al.  In an attempt to provide a user's guide to the galaxy of benzylidene, alkoxybenzylidene, and indenylidene ruthenium olefin metathesis catalysts. , 2008, Chemistry.

[27]  S. Nolan,et al.  N-heterocyclic carbene and phosphine ruthenium indenylidene precatalysts: a comparative study in olefin metathesis. , 2007, Chemistry.

[28]  Steven P. Nolan,et al.  Nachhaltige Konzepte in der Olefinmetathese , 2007 .

[29]  A. Kirschning,et al.  Sustainable concepts in olefin metathesis. , 2007, Angewandte Chemie.

[30]  M. Barbasiewicz,et al.  Probing of the Ligand Anatomy: Effects of the Chelating Alkoxy Ligand Modifications on the Structure and Catalytic Activity of Ruthenium Carbene Complexes , 2007 .

[31]  K. Grela,et al.  Advanced fine-tuning of grubbs/hoveyda olefin metathesis catalysts: a further step toward an optimum balance between antinomic properties. , 2006, Journal of the American Chemical Society.

[32]  Volodymyr Sashuk,et al.  Nitro-substituted Hoveyda-Grubbs ruthenium carbenes: enhancement of catalyst activity through electronic activation. , 2004, Journal of the American Chemical Society.

[33]  Alexander Deiters,et al.  Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. , 2004, Chemical reviews.

[34]  R. Grubbs Handbook of metathesis , 2003 .

[35]  S. Blechert,et al.  Recent developments in olefin cross-metathesis. , 2003, Angewandte Chemie.

[36]  S. Blechert,et al.  Jüngste Entwicklungen bei der gekreuzten Olefinmetathese , 2003 .

[37]  S. Harutyunyan,et al.  A Highly Efficient Ruthenium Catalyst for Metathesis Reactions , 2002 .

[38]  S. Blechert,et al.  Ein hochaktiver und luftstabiler Rutheniumkomplex für die Olefinmetathese , 2002 .

[39]  S. Blechert,et al.  A highly active and air-stable ruthenium complex for olefin metathesis. , 2002, Angewandte Chemie.

[40]  R. Grubbs,et al.  Mechanism and activity of ruthenium olefin metathesis catalysts. , 2001, Journal of the American Chemical Society.

[41]  S. Blechert,et al.  Synthesis and metathesis reactions of a phosphine-free dihydroimidazole carbene ruthenium complex , 2000 .

[42]  A. Hoveyda,et al.  Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts , 2000 .

[43]  S. Nolan,et al.  Influence of Sterically Demanding Carbene Ligation on Catalytic Behavior and Thermal Stability of Ruthenium Olefin Metathesis Catalysts , 1999 .

[44]  R. Grubbs,et al.  Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. , 1999, Organic letters.

[45]  W. Herrmann,et al.  N-heterocyclic carbenes: novel ruthenium–alkylidene complexes , 1999 .

[46]  J. P. Harrity,et al.  A Recyclable Ru-Based Metathesis Catalyst , 1999 .

[47]  J. Ziller,et al.  Synthesis and Applications of RuCl2(CHR‘)(PR3)2: The Influence of the Alkylidene Moiety on Metathesis Activity , 1996 .

[48]  S. Nguyen,et al.  Syntheses and activities of new single-component, ruthenium-based olefin metathesis catalysts , 1993 .

[49]  S. Nguyen,et al.  Ring-opening metathesis polymerization (ROMP) of norbornene by a Group VIII carbene complex in protic media , 1992 .

[50]  M. Meier,et al.  Poly-α,β-unsaturated aldehydes derived from castor oil via ADMET polymerization , 2011 .

[51]  F. Verpoort,et al.  Indenylidene‐Ruthenium Complexes Bearing Saturated N‐Heterocyclic Carbenes: Synthesis and Catalytic Investigation in Olefin Metathesis Reactions , 2008 .