On the origin of event-related potentials indexing covert attentional selection during visual search.

Despite nearly a century of electrophysiological studies recording extracranially from humans and intracranially from monkeys, the neural generators of nearly all human event-related potentials (ERPs) have not been definitively localized. We recorded an attention-related ERP component, known as the N2pc, simultaneously with intracranial spikes and local field potentials (LFPs) in macaques to test the hypothesis that an attentional-control structure, the frontal eye field (FEF), contributed to the generation of the macaque homologue of the N2pc (m-N2pc). While macaques performed a difficult visual search task, the search target was selected earliest by spikes from single FEF neurons, later by FEF LFPs, and latest by the m-N2pc. This neurochronometric comparison provides an empirical bridge connecting macaque and human experiments and a step toward localizing the neural generator of this important attention-related ERP component.

[1]  S. Hillyard,et al.  Event-related brain potentials in the study of visual selective attention. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[2]  J. Ebersole Defining epileptogenic foci: past, present, future. , 1997, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[3]  Robert Desimone,et al.  Feature-Based Attention in the Frontal Eye Field and Area V4 during Visual Search , 2011, Neuron.

[4]  Walter Wg,et al.  CRITICAL REVIEW: THE TECHNIQUE AND APPLICATION OF ELECTRO-ENCEPHALOGRAPHY , 1938 .

[5]  Jeffrey D. Schall,et al.  Neural basis of saccade target selection in frontal eye field during visual search , 1993, Nature.

[6]  Ilya E. Monosov,et al.  Measurements of Simultaneously Recorded Spiking Activity and Local Field Potentials Suggest that Spatial Selection Emerges in the Frontal Eye Field , 2008, Neuron.

[7]  N. P. Bichot,et al.  Dissociation of visual discrimination from saccade programming in macaque frontal eye field. , 1997, Journal of neurophysiology.

[8]  Richard P. Heitz,et al.  Neural basis of the set-size effect in frontal eye field: timing of attention during visual search. , 2009, Journal of neurophysiology.

[9]  Jon Driver,et al.  Reward Priority of Visual Target Singletons Modulates Event-Related Potential Signatures of Attentional Selection , 2009, Psychological science.

[10]  C. Bruce,et al.  Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. , 1985, Journal of neurophysiology.

[11]  Geoffrey F. Woodman,et al.  Electrophysiological measurement of rapid shifts of attention during visual search , 1999, Nature.

[12]  H. Helmholtz Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch‐elektrischen Versuche , 1853 .

[13]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[14]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[15]  Veit Stuphorn,et al.  Chronometry of visual responses in frontal eye field, supplementary eye field, and anterior cingulate cortex. , 2005, Journal of neurophysiology.

[16]  Victor A. F. Lamme,et al.  Texture segregation is processed by primary visual cortex in man and monkey. Evidence from VEP experiments , 1992, Vision Research.

[17]  Martin Eimer,et al.  The Roles of Feature-Specific Task Set and Bottom-Up Salience in Attentional Capture : An ERP Study , 2009 .

[18]  V. Mountcastle,et al.  Higher functions of the brain , 1987 .

[19]  H. Berger Über das Elektrenkephalogramm des Menschen , 1938, Archiv für Psychiatrie und Nervenkrankheiten.

[20]  Etienne Olivier,et al.  Contribution of the Monkey Frontal Eye Field to Covert Visual Attention , 2006, The Journal of Neuroscience.

[21]  M. Gazzaniga,et al.  Combined spatial and temporal imaging of brain activity during visual selective attention in humans , 1994, Nature.

[22]  Jeffrey D Schall,et al.  Event-Related Potentials Elicited by Errors during the Stop-Signal Task. I. Macaque Monkeys , 2011, The Journal of Neuroscience.

[23]  David L. Sheinberg,et al.  The Effects of Prefrontal Cortex Inactivation on Object Responses of Single Neurons in the Inferotemporal Cortex during Visual Search , 2011, The Journal of Neuroscience.

[24]  M. Ghilardi,et al.  Visual 'cognitive' evoked potentials in the behaving monkey. , 1991, Electroencephalography and clinical neurophysiology.

[25]  J. Theeuwes Top-down and bottom-up control of visual selection: Reply to commentaries , 2010 .

[26]  S. Luck,et al.  Bridging the Gap between Monkey Neurophysiology and Human Perception: An Ambiguity Resolution Theory of Visual Selective Attention , 1997, Cognitive Psychology.

[27]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[28]  S. Luck,et al.  Electrophysiological correlates of feature analysis during visual search. , 1994, Psychophysiology.

[29]  S. Klein,et al.  The topography of visual evoked response properties across the visual field. , 1994, Electroencephalography and clinical neurophysiology.

[30]  R. Lemon,et al.  EEG oscillations at 600 Hz are macroscopic markers for cortical spike bursts , 2003, The Journal of physiology.

[31]  N. P. Bichot,et al.  Visual feature selectivity in frontal eye fields induced by experience in mature macaques , 1996, Nature.

[32]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[33]  Jeffrey D. Schall,et al.  Review of signal distortion through metal microelectrode recording circuits and filters , 2008, Journal of Neuroscience Methods.

[34]  A Treisman,et al.  Feature analysis in early vision: evidence from search asymmetries. , 1988, Psychological review.

[35]  Jeffrey D Schall,et al.  On the role of frontal eye field in guiding attention and saccades , 2004, Vision Research.

[36]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[37]  G. Woodman,et al.  Measurement of the extraocular spike potential during saccade countermanding. , 2011, Journal of neurophysiology.

[38]  Marsan Ca ELECTRICAL ACTIVITY OF THE BRAIN: SLOW WAVES AND NEURONAL ACTIVITY. , 1965 .

[39]  S J Luck,et al.  Electrophysiological evidence for parallel and serial processing during visual search , 1990, Perception & psychophysics.

[40]  Takashi R Sato,et al.  Neuronal Basis of Covert Spatial Attention in the Frontal Eye Field , 2005, The Journal of Neuroscience.

[41]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[42]  T. Powell,et al.  The basic uniformity in structure of the neocortex. , 1980, Brain : a journal of neurology.

[43]  P Kahane,et al.  Intracranial EEG and human brain mapping , 2003, Journal of Physiology-Paris.

[44]  G. Orban,et al.  Attention Mechanisms in Visual SearchAn fMRI Study , 2000, Journal of Cognitive Neuroscience.

[45]  N. P. Bichot,et al.  Reliability of Macaque Frontal Eye Field Neurons Signaling Saccade Targets during Visual Search , 2001, The Journal of Neuroscience.

[46]  S. Luck,et al.  Attention to Features Precedes Attention to Locations in Visual Search: Evidence from Electromagnetic Brain Responses in Humans , 2004, The Journal of Neuroscience.

[47]  M. Taussig The Nervous System , 1991 .

[48]  Yosef Cohen,et al.  Statistics and Data with R: An applied approach through examples , 1991 .

[49]  Richard P. Heitz,et al.  Source localization of an event-related potential indexing covert shifts of attention in macaques , 2011 .

[50]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. , 1983, Journal of neurophysiology.

[51]  E D Adrian,et al.  The interpretation of potential waves in the cortex , 1934, The Journal of physiology.

[52]  Anna C Nobre,et al.  FEF TMS affects visual cortical activity. , 2006, Cerebral cortex.

[53]  Geoffrey F Woodman,et al.  Serial deployment of attention during visual search. , 2003, Journal of experimental psychology. Human perception and performance.

[54]  O. Hikosaka,et al.  Comparison of Reward Modulation in the Frontal Eye Field and Caudate of the Macaque , 2006, The Journal of Neuroscience.

[55]  S. Zeki Cortical projections from two prestriate areas in the monkey. , 1971, Brain research.

[56]  P. Nunez,et al.  Electric fields of the brain , 1981 .

[57]  Chi-Hung Juan,et al.  Human frontal eye fields and visual search. , 2003, Journal of neurophysiology.

[58]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[59]  A. Starr,et al.  Task-relevant late positive component of the auditory event-related potential in monkeys resembles P300 in humans. , 1984, Science.

[60]  M. Carandini,et al.  Local Origin of Field Potentials in Visual Cortex , 2009, Neuron.

[61]  H. Berger Über das Elektrenkephalogramm des Menschen , 1929, Archiv für Psychiatrie und Nervenkrankheiten.

[62]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[63]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[64]  N. P. Bichot,et al.  Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. , 1996, Journal of neurophysiology.

[65]  Jan Theeuwes,et al.  Electrophysiological Evidence of the Capture of Visual Attention , 2013, J. Cogn. Neurosci..

[66]  M. Eimer The N2pc component as an indicator of attentional selectivity. , 1996, Electroencephalography and clinical neurophysiology.

[67]  F. Bloom,et al.  Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Prof. Dr. Valentino Braitenberg,et al.  Anatomy of the Cortex , 1991, Studies of Brain Function.

[69]  N. P. Bichot,et al.  A visual salience map in the primate frontal eye field. , 2005, Progress in brain research.

[70]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[71]  Richard P. Heitz,et al.  Biophysical support for functionally distinct cell types in the frontal eye field. , 2009, Journal of neurophysiology.

[72]  S. Luck,et al.  Neural sources of focused attention in visual search. , 2000, Cerebral cortex.

[73]  I. Jentzsch,et al.  Distinguishing neural sources of movement preparation and execution An electrophysiological analysis , 2002, Biological Psychology.

[74]  Stephen J. Gotts,et al.  Cell-Type-Specific Synchronization of Neural Activity in FEF with V 4 during Attention , 2022 .

[75]  S. Luck An Introduction to the Event-Related Potential Technique , 2005 .

[76]  M. Murray,et al.  EEG source imaging , 2004, Clinical Neurophysiology.

[77]  M. Husain,et al.  Involvement of prefrontal cortex in visual search , 2007, Experimental Brain Research.

[78]  Takashi R Sato,et al.  Search Efficiency but Not Response Interference Affects Visual Selection in Frontal Eye Field , 2001, Neuron.

[79]  Ken Nakayama,et al.  Attentional requirements in a ‘preattentive’ feature search task , 1997, Nature.

[80]  O. Tzeng,et al.  Segregation of visual selection and saccades in human frontal eye fields. , 2008, Cerebral cortex.

[81]  Henry Kennedy,et al.  Pathways of Attention: Synaptic Relationships of Frontal Eye Field to V4, Lateral Intraparietal Cortex, and Area 46 in Macaque Monkey , 2011, The Journal of Neuroscience.

[82]  C. E. Schroeder,et al.  Contribution of extrastriate area V4 to the surface-recorded flash VEP in the awake macaque , 1994, Vision Research.

[83]  M Steinschneider,et al.  Demonstration of mismatch negativity in the monkey. , 1992, Electroencephalography and clinical neurophysiology.

[84]  S. Hillyard,et al.  Electrophysiology of Cognition , 2011 .

[85]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[86]  C. C. Wood,et al.  Potentials evoked in human and monkey medial temporal lobe during auditory and visual oddball paradigms. , 1992, Electroencephalography and clinical neurophysiology.

[87]  Jeremy M. Wolfe,et al.  Guided Search 4.0: Current Progress With a Model of Visual Search , 2007, Integrated Models of Cognitive Systems.

[88]  Ilya E. Monosov,et al.  Frontal eye field activity enhances object identification during covert visual search. , 2009, Journal of neurophysiology.

[89]  G. Woodman,et al.  Dissociations Among Attention, Perception, and Awareness During Object-Substitution Masking , 2003, Psychological science.

[90]  Hans-Jochen Heinze,et al.  Neural Mechanisms of Surround Attenuation and Distractor Competition in Visual Search , 2011, The Journal of Neuroscience.

[91]  JENNIFER S. BUCHWALD,et al.  Comparison of Multiple-unit and Electroencephalogram Activity recorded from the same Brain Sites during Behavioural Conditioning , 1965, Nature.

[92]  M. Rugg,et al.  Electrophysiology of Mind: Event-Related Brain Potentials and Cognition , 1995 .

[93]  R. M. Siegel,et al.  Neurons of area 7 activated by both visual stimuli and oculomotor behavior , 2004, Experimental Brain Research.

[94]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[95]  N. P. Bichot,et al.  Priming in Macaque Frontal Cortex during Popout Visual Search: Feature-Based Facilitation and Location-Based Inhibition of Return , 2002, The Journal of Neuroscience.

[96]  C. Schroeder,et al.  Subcortical contributions to the surface-recorded flash-VEP in the awake macaque. , 1992, Electroencephalography and clinical neurophysiology.

[97]  G. Fromm,et al.  The relationship between neuron activity and cortical steady potentials. , 1967, Electroencephalography and clinical neurophysiology.

[98]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. , 1983, Journal of neurophysiology.

[99]  C. Schroeder,et al.  Striate cortical contribution to the surface-recorded pattern-reversal vep in the alert monkey , 1991, Vision Research.

[100]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[101]  C. Schroeder,et al.  Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. , 2000, Cerebral cortex.

[102]  R. Tootell,et al.  Where is 'dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence. , 2001, Cerebral cortex.

[103]  G. Orban,et al.  Searching for a salient target involves frontal regions. , 2010, Cerebral cortex.

[104]  G. Fromm,et al.  SLOW CHANGES IN THE ELECTROCORTICOGRAM AND THE ACTIVITY OF CORTICAL NEURONS. , 1964, Electroencephalography and clinical neurophysiology.

[105]  S. Hillyard,et al.  Identification of early visual evoked potential generators by retinotopic and topographic analyses , 1994 .

[106]  Tirin Moore,et al.  Changes in Visual Receptive Fields with Microstimulation of Frontal Cortex , 2006, Neuron.

[107]  C A MARSAN ELECTRICAL ACTIVITY OF THE BRAIN: SLOW WAVES AND NEURONAL ACTIVITY. , 1965, Israel journal of medical sciences.

[108]  Takashi R Sato,et al.  Effects of Stimulus-Response Compatibility on Neural Selection in Frontal Eye Field , 2003, Neuron.

[109]  C. Schroeder,et al.  Intermodal selective attention in monkeys. II: physiological mechanisms of modulation. , 2000, Cerebral cortex.

[110]  C. Brunia,et al.  CNV and EMG preceding a plantar flexion of the foot , 1980, Biological Psychology.

[111]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[112]  N. P. Bichot,et al.  Effects of similarity and history on neural mechanisms of visual selection , 1999, Nature Neuroscience.

[113]  W. Walter,et al.  COMPARISON OF SUBCORTICAL, CORTICAL AND SCALP ACTIVITY USING CHRONICALLY INDWELLING ELECTRODES IN MAN. , 1965, Electroencephalography and clinical neurophysiology.

[114]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[115]  Tirin Moore,et al.  Influence and Limitations of Popout in the Selection of Salient Visual Stimuli by Area V4 Neurons , 2009, The Journal of Neuroscience.

[116]  S J Luck,et al.  Spatial filtering during visual search: evidence from human electrophysiology. , 1994, Journal of experimental psychology. Human perception and performance.

[117]  J. Wolfe,et al.  What Can 1 Million Trials Tell Us About Visual Search? , 1998 .

[118]  P. Roelfsema,et al.  Bottom-Up Dependent Gating of Frontal Signals in Early Visual Cortex , 2008, Science.

[119]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[120]  M Corbetta,et al.  Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[121]  C. Bundesen,et al.  A neural theory of visual attention: bridging cognition and neurophysiology. , 2005, Psychological review.

[122]  R. Desimone,et al.  High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention , 2009, Science.

[123]  M. Paré,et al.  Temporal processing of saccade targets in parietal cortex area LIP during visual search. , 2007, Journal of neurophysiology.

[124]  N. P. Bichot,et al.  Continuous processing in macaque frontal cortex during visual search , 2001, Neuropsychologia.

[125]  J. Schall,et al.  Visual and Motor Connectivity and the Distribution of Calcium-Binding Proteins in Macaque Frontal Eye Field: Implications for Saccade Target Selection , 2009, Front. Neuroanat..

[126]  G. Woodman,et al.  The Effect of Visual Search Efficiency on Response Preparation , 2008, Psychological science.

[127]  S. Luck,et al.  How does attention attenuate target-distractor interference in vision?. Evidence from magnetoencephalographic recordings. , 2002, Brain research. Cognitive brain research.

[128]  H. Kennedy,et al.  Laminar Distribution of Neurons in Extrastriate Areas Projecting to Visual Areas V1 and V4 Correlates with the Hierarchical Rank and Indicates the Operation of a Distance Rule , 2000, The Journal of Neuroscience.

[129]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[130]  A. Treisman,et al.  Conjunction search revisited. , 1990, Journal of experimental psychology. Human perception and performance.

[131]  Jeffrey D Schall,et al.  Nonhuman primate event-related potentials indexing covert shifts of attention , 2007, Proceedings of the National Academy of Sciences.

[132]  G. Woodman Homologues of Human ERP Components in Nonhuman Primates , 2011 .

[133]  Richard P. Heitz,et al.  Neural correlates of correct and errant attentional selection revealed through N2pc and frontal eye field activity. , 2010, Journal of neurophysiology.

[134]  David L. Sheinberg,et al.  Paired neuron recordings in the prefrontal and inferotemporal cortices reveal that spatial selection precedes object identification during visual search , 2010, Proceedings of the National Academy of Sciences.