Lunar laser ranging in infrared at the Grasse laser station

For many years, lunar laser ranging (LLR) observations using a green wavelength have suffered an inhomogeneity problem both temporally and spatially. This paper reports on the implementation of a new infrared detection at the Grasse LLR station and describes how infrared telemetry improves this situation. Our first results show that infrared detection permits us to densify the observations and allows measurements during the new and the full Moon periods. The link budget improvement leads to homogeneous telemetric measurements on each lunar retro-reflector. Finally, a surprising result is obtained on the Lunokhod 2 array which attains the same efficiency as Lunokhod 1 with an infrared laser link, although those two targets exhibit a differential efficiency of six with a green laser link.

[1]  H. Kunimori,et al.  Large-aperture germanium detector package for picosecond photon counting in the 0.5-1.6-microm range. , 1996, Optics letters.

[2]  David E. Smith,et al.  Contributions of space geodesy to geodynamics : technology , 1993 .

[3]  A. Freise,et al.  Interferometer Techniques for Gravitational-Wave Detection , 2009, Living reviews in relativity.

[4]  A. Freise,et al.  Interferometer techniques for gravitational-wave detection , 2017, Living reviews in relativity.

[5]  Ivan Prochazka,et al.  Optical signal path delay fluctuations caused by atmospheric turbulence. , 2005, Optics letters.

[6]  K. Nordtvedt Optimizing the observation schedule for tests of gravity in lunar laser ranging and similar experiments , 1998 .

[7]  C. D. Hoyle,et al.  Laser ranging to the lost Lunokhod 1 reflector , 2010, 1009.5720.

[8]  Kenneth Nordtvedt,et al.  Lunar laser ranging and the equivalence principle signal , 1998 .

[9]  Christopher W. Stubbs,et al.  Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) , 2004 .

[10]  James G. Williams,et al.  Tides on the Moon: Theory and determination of dissipation , 2015 .

[11]  R. Mcmillan,et al.  APOLLO: millimeter lunar laser ranging , 2012 .

[12]  A. Fienga,et al.  Numerical estimation of the sensitivity of INPOP planetary ephemerides to general relativity parameters , 2014, Celestial Mechanics and Dynamical Astronomy.

[13]  T. W. Murphy,et al.  Lunar eclipse observations reveal anomalous thermal performance of Apollo reflectors , 2013, 1309.6274.

[14]  A. Fienga,et al.  Interests of a new lunar laser instrumentation on the ESO NTT Telescope , 2014, 1405.0473.

[15]  T. Murphy Lunar laser ranging: the millimeter challenge , 2013, Reports on progress in physics. Physical Society.

[16]  Etienne Samain,et al.  Millimetric Lunar Laser Ranging at OCA (Observatoire de la Côte d'Azur) , 1998 .

[17]  G. Neumann,et al.  Laser Ranging for Gravitational, Lunar and Planetary Science , 2007, 0712.3539.

[18]  James G. Williams,et al.  Lunar laser ranging tests of the equivalence principle , 2005, 1203.2150.

[19]  Jürgen Müller,et al.  Lunar laser ranging test of the Nordtvedt parameter and a possible variation in the gravitational constant , 2010 .

[20]  A. Tosi,et al.  Advances in InGaAsP-based avalanche diode single photon detectors , 2011 .

[21]  D. Fried Optical Resolution Through a Randomly Inhomogeneous Medium for Very Long and Very Short Exposures , 1966 .

[22]  J. Hardy,et al.  Adaptive Optics for Astronomical Telescopes , 1998 .

[23]  C. D. Hoyle,et al.  Long-term degradation of optical devices on the Moon , 2010, 1003.0713.