The (non-)existence of perfect codes in Fibonacci cubes

The Fibonacci cube ? n is obtained from the n-cube Q n by removing all the vertices that contain two consecutive 1s. It is proved that ? n admits a perfect code if and only if n ? 3 . Fibonacci cubes are isometric subgraphs of hypercubes and form an appealing model for interconnection networks.The study of codes in graphs presents a wide generalization of the problem of the existence of classical error-correcting codes.In this paper, it is proved that Fibonacci cubes do not admit any perfect code, unless the dimension is less than or equal to 3.

[1]  Paul Cull,et al.  Error-correcting codes on the towers of Hanoi graphs , 1999, Discret. Math..

[2]  Pranava K. Jha Tight-optimal circulants vis-à-vis twisted tori , 2014, Discret. Appl. Math..

[3]  Michel Mollard,et al.  Asymptotic Properties of Fibonacci Cubes and Lucas Cubes , 2013 .

[4]  Gary MacGillivray,et al.  Efficient domination in circulant graphs , 2013, Discret. Math..

[5]  Italo J. Dejter,et al.  Efficient dominating sets in Cayley graphs , 2003, Discret. Appl. Math..

[6]  Yun-Ping Deng Efficient dominating sets in circulant graphs with domination number prime , 2014, Inf. Process. Lett..

[7]  Dewey T. Taylor Perfect r-Codes in Lexicographic Products of Graphs , 2009, Ars Comb..

[8]  Sandi Klavzar,et al.  Structure of Fibonacci cubes: a survey , 2013, J. Comb. Optim..

[9]  Heping Zhang,et al.  Proofs of two conjectures on generalized Fibonacci cubes , 2016, Eur. J. Comb..

[10]  Sandi Klavzar,et al.  Generalized Fibonacci cubes , 2012, Discret. Math..

[11]  P. Cull,et al.  Perfect codes on graphs , 1997, Proceedings of IEEE International Symposium on Information Theory.

[12]  Sandi Klavzar,et al.  Connectivity of Fibonacci cubes, Lucas cubes, and generalized cubes , 2015, Discret. Math. Theor. Comput. Sci..

[13]  Janez Zerovnik,et al.  Perfect codes in direct graph bundles , 2015, Inf. Process. Lett..

[14]  Michel Mollard,et al.  The degree sequence of Fibonacci and Lucas cubes , 2011, Discret. Math..

[15]  Jan Kratochvíl,et al.  Perfect codes over graphs , 1986, J. Comb. Theory, Ser. B.

[16]  Janez Zerovnik,et al.  Perfect codes in direct products of cycles - a complete characterization , 2008, Adv. Appl. Math..

[17]  S. Klavžar,et al.  1-perfect codes in Sierpiński graphs , 2002, Bulletin of the Australian Mathematical Society.

[18]  Michel Mollard On perfect codes in Cartesian products of graphs , 2011, Eur. J. Comb..

[19]  Sandi Klavzar,et al.  An almost complete description of perfect codes in direct products of cycles , 2006, Adv. Appl. Math..

[20]  Sandi Klavzar,et al.  On the Wiener index of generalized Fibonacci cubes and Lucas cubes , 2015, Discret. Appl. Math..

[21]  Mark Ramras Congestion-free routing of linear permutations on Fibonacci and Lucas cubes , 2014, Australas. J Comb..

[22]  Aleksander Vesel Linear Recognition and Embedding of Fibonacci Cubes , 2013, Algorithmica.

[23]  Sylvain Gravier,et al.  On disjoint hypercubes in Fibonacci cubes , 2015, Discret. Appl. Math..

[24]  Martin Milanič,et al.  Polynomial-time algorithms for weighted efficient domination problems in AT-free graphs and dually chordal graphs , 2014, Inf. Process. Lett..

[25]  Ghidewon Abay-Asmerom,et al.  Perfect r-Codes in Strong Products of Graphs , 2007 .

[26]  Martin Knor,et al.  Efficient domination in cubic vertex-transitive graphs , 2012, Eur. J. Comb..