Direct Control Design via Controller Unfalsification

This paper proposes a non-iterative direct approach for controller design from experimental data; the parameters of a controller of a prescribed order and structure are optimized with respect to a relevant performance criterion. The proposed design method enjoys the following features: (i) It does not involve the identification of the process to be controlled; (ii) it only requires a single experiment; (iii) in the case of stable plants, no initial controller is needed even when the process to be controlled is non-minimum phase; and (iv) it provides sufficient conditions for the resulting closed-loop system to be stable. The approach builds upon the so-called unfalsified control theory; this key point makes it possible to derive simple and intuitive relations between the choice of the performance criterion to be optimized and closed-loop stability conditions. The analysis is supported by numerical examples. Copyright (c) 2017 John Wiley & Sons, Ltd.

[1]  Edoardo Mosca,et al.  Closed-loop monitoring for early detection of performance losses in feedback-control systems , 2003, Autom..

[2]  Michael G. Safonov,et al.  Safe Adaptive Switching Control: Stability and Convergence , 2008, IEEE Transactions on Automatic Control.

[3]  Michael G. Safonov,et al.  Unfalsifying Pole Locations Using a Fading Memory Cost Function , 2014 .

[4]  Giorgio Battistelli,et al.  Multi-model unfalsified adaptive switching supervisory control , 2010, Autom..

[5]  A. Karimi,et al.  Iterative correlation‐based controller tuning , 2004 .

[6]  Robert L. Kosut Uncertainty Model Unfalsification for Robust Adaptive Control , 1998 .

[7]  Brian D. O. Anderson,et al.  Validating Controllers for Internal Stability Utilizing Closed-Loop Data , 2009, IEEE Transactions on Automatic Control.

[8]  Giorgio Battistelli,et al.  Adaptive memory in multi-model switching control of uncertain plants , 2014, Autom..

[9]  Michael G. Safonov,et al.  Unfalsified adaptive control: Controller switching algorithms for nonmonotone cost functions , 2012 .

[10]  Ioan Doré Landau,et al.  A Flexible Transmission System as a Benchmark for Robust Digital Control , 1995, Eur. J. Control.

[11]  Edoardo Mosca,et al.  Inference of candidate loop performance and data filtering for switching supervisory control , 2001, Autom..

[12]  A. Karimi,et al.  Data‐driven model reference control with asymptotically guaranteed stability , 2011 .

[13]  Sergio M. Savaresi,et al.  Optimal input design for direct data-driven tuning of model-reference controllers , 2013, Autom..

[14]  Michael G. Safonov,et al.  The unfalsified control concept and learning , 1997 .

[15]  Sergio M. Savaresi,et al.  Direct nonlinear control design: the virtual reference feedback tuning (VRFT) approach , 2006, IEEE Transactions on Automatic Control.

[16]  A. Paul,et al.  Cost detectability and stability of adaptive control systems , 2007 .

[17]  Dominique Bonvin,et al.  Data-driven estimation of the infinity norm of a dynamical system , 2007, 2007 46th IEEE Conference on Decision and Control.

[18]  Svante Gunnarsson,et al.  Iterative feedback tuning: theory and applications , 1998 .

[19]  Michel Gevers,et al.  Model-free Tuning of a Robust Regulator for a Flexible Transmission System , 1995, Eur. J. Control.

[20]  Håkan Hjalmarsson,et al.  From experiment design to closed-loop control , 2005, Autom..

[21]  Giorgio Battistelli,et al.  Multi‐model unfalsified adaptive switching control: Test functionals for stability and performance , 2011 .

[22]  Antonio Sala,et al.  Extensions to "virtual reference feedback tuning: A direct method for the design of feedback controllers" , 2005, Autom..

[23]  Giorgio Battistelli,et al.  Stability of Unfalsified Adaptive Switching Control in Noisy Environments , 2010, IEEE Transactions on Automatic Control.

[24]  Michael G. Safonov,et al.  Controller parameter adaptation algorithm using unfalsified control theory and gradient method , 2002 .

[25]  Sergio M. Savaresi,et al.  Virtual reference feedback tuning: a direct method for the design of feedback controllers , 2002, Autom..

[26]  Antonio M. Pascoal,et al.  Robust multiple model adaptive control (RMMAC): a case study , 2007 .