Dimerisation of the PICTS complex via LC8/Cut-up drives co-transcriptional transposon silencing in Drosophila

In animal gonads, the PIWI-interacting RNA (piRNA) pathway guards genome integrity in part through the co-transcriptional gene silencing of transposon insertions. In Drosophila ovaries, piRNA-loaded Piwi detects nascent transposon transcripts and instructs heterochromatin formation through the Panoramix-induced co-transcriptional silencing (PICTS) complex, containing Panoramix, Nxf2 and Nxt1. Here, we report that the highly conserved dynein light chain LC8/Cut-up (Ctp) is an essential component of the PICTS complex. Loss of Ctp results in transposon de-repression and a reduction in repressive chromatin marks specifically at transposon loci. In turn, Ctp can enforce transcriptional silencing when artificially recruited to RNA and DNA reporters. We show that Ctp drives dimerisation of the PICTS complex through its interaction with conserved motifs within Panoramix. Artificial dimerisation of Panoramix bypasses the necessity for its interaction with Ctp, demonstrating that conscription of a protein from a ubiquitous cellular machinery has fulfilled a fundamental requirement for a transposon silencing complex.

[1]  D. Patel,et al.  Molecular principles of Piwi-mediated cotranscriptional silencing through the dimeric SFiNX complex , 2021, bioRxiv.

[2]  D. O’Carroll,et al.  TEX15 is an essential executor of MIWI2-directed transposon DNA methylation and silencing , 2020, Nature Communications.

[3]  D. O’Carroll,et al.  SPOCD1 is an essential executor of piRNA-directed de novo DNA methylation , 2020, Nature.

[4]  C. Jourdan,et al.  The Mi-2 nucleosome remodeler and the Rpd3 histone deacetylase are involved in piRNA-guided heterochromatin formation , 2020, Nature Communications.

[5]  Elisar Barbar,et al.  Emerging Features of Linear Motif-Binding Hub Proteins. , 2020, Trends in biochemical sciences.

[6]  J. Prell,et al.  The dynein light chain 8 (LC8) binds predominantly “in-register” to a multivalent intrinsically disordered partner , 2020, The Journal of Biological Chemistry.

[7]  G. Cham,et al.  Silencing , 2020, The Routledge Handbook to the Culture and Media of the Americas.

[8]  A. Aravin,et al.  Su(var)2-10 and the SUMO Pathway Link piRNA-Guided Target Recognition to Chromatin Silencing. , 2019, Molecular cell.

[9]  M. Siomi,et al.  Essential roles of Windei and nuclear monoubiquitination of Eggless/SETDB1 in transposon silencing , 2019, EMBO reports.

[10]  M. Dong,et al.  A Pandas complex adapted for piRNA-guided transcriptional silencing and heterochromatin formation , 2019, Nature Cell Biology.

[11]  Kuniaki Saito,et al.  Nuclear RNA export factor variant initiates piRNA-guided co-transcriptional silencing , 2019, bioRxiv.

[12]  Xiang-Dong Fu,et al.  Chromatin-associated RNAs as facilitators of functional genomic interactions , 2019, Nature Reviews Genetics.

[13]  C. Feschotte,et al.  Host–transposon interactions: conflict, cooperation, and cooption , 2019, Genes & development.

[14]  Graydon B. Gonsalvez,et al.  The Egalitarian binding partners Dynein light chain and Bicaudal-D act sequentially to link mRNA to the Dynein motor , 2019, Development.

[15]  G. Hannon,et al.  Specialization of the Drosophila nuclear export family protein Nxf3 for piRNA precursor export , 2019, bioRxiv.

[16]  Norman E. Davey,et al.  Systematic identification of recognition motifs for the hub protein LC8 , 2019, Life Science Alliance.

[17]  A. Villunger,et al.  Dynein light chain binding determines complex formation and posttranslational stability of the Bcl-2 family members Bmf and Bim , 2019, Cell Death & Differentiation.

[18]  D. Patel,et al.  The nascent RNA binding complex SFiNX licenses piRNA-guided heterochromatin formation , 2019, Nature Structural & Molecular Biology.

[19]  G. Hannon,et al.  piRNA-guided co-transcriptional silencing coopts nuclear export factors , 2019, bioRxiv.

[20]  G. Hannon,et al.  Daedalus and Gasz recruit Armitage to mitochondria, bringing piRNA precursors to the biogenesis machinery , 2019, bioRxiv.

[21]  Kuniaki Saito,et al.  Nuclear RNA export factor variant initiates piRNA-guided co-transcriptional silencing , 2019, bioRxiv.

[22]  Peter R Andersen,et al.  A Heterochromatin-Specific RNA Export Pathway Facilitates piRNA Production , 2019, Cell.

[23]  Ole Winther,et al.  NetSurfP‐2.0: Improved prediction of protein structural features by integrated deep learning , 2019, Proteins.

[24]  Minghui He,et al.  Ovaries absent links dLsd1 to HP1a for local H3K4 demethylation required for heterochromatic gene silencing , 2019, eLife.

[25]  G. Hannon,et al.  piRNA-Guided Genome Defense: From Biogenesis to Silencing. , 2018, Annual review of genetics.

[26]  Deniz M. Ozata,et al.  PIWI-interacting RNAs: small RNAs with big functions , 2018, Nature Reviews Genetics.

[27]  Sarah A. Clark,et al.  Multivalency regulates activity in an intrinsically disordered transcription factor , 2018, eLife.

[28]  Andrew N. Holding,et al.  A quantitative mass spectrometry-based approach to monitor the dynamics of endogenous chromatin-associated protein complexes , 2018, Nature Communications.

[29]  Ole Winther,et al.  NetSurfP-2.0: improved prediction of protein structural features by integrated deep learning , 2018, bioRxiv.

[30]  T. Schroer,et al.  Recruitment of two dyneins to an mRNA-dependent Bicaudal D transport complex , 2018, bioRxiv.

[31]  G. Clore,et al.  Xplor‐NIH for molecular structure determination from NMR and other data sources , 2018, Protein science : a publication of the Protein Society.

[32]  Lukas Zimmermann,et al.  A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. , 2017, Journal of molecular biology.

[33]  Kuldip K. Paliwal,et al.  Capturing non‐local interactions by long short‐term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility , 2017, Bioinform..

[34]  Mustafa Mir,et al.  Phase separation drives heterochromatin domain formation , 2017, Nature.

[35]  Alma L. Burlingame,et al.  Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin , 2017, Nature.

[36]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[37]  Matthew Stephens,et al.  False discovery rates: a new deal , 2016, bioRxiv.

[38]  K. Senti,et al.  Silencio/CG9754 connects the Piwi–piRNA complex to the cellular heterochromatin machinery , 2015, Genes & development.

[39]  G. Hannon,et al.  Panoramix enforces piRNA-dependent cotranscriptional silencing , 2015, Science.

[40]  Sarah A. Clark,et al.  Multivalent IDP assemblies: Unique properties of LC8‐associated, IDP duplex scaffolds , 2015, FEBS letters.

[41]  R. Martienssen,et al.  RNAi and heterochromatin assembly. , 2015, Cold Spring Harbor perspectives in biology.

[42]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[43]  S. Rafii,et al.  Two waves of de novo methylation during mouse germ cell development , 2014, Genes & development.

[44]  R. Sachidanandam,et al.  piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells , 2014, Genes & development.

[45]  K. Slep,et al.  The Mechanism of Dynein Light Chain LC8-mediated Oligomerization of the Ana2 Centriole Duplication Factor* , 2014, The Journal of Biological Chemistry.

[46]  R. Pillai,et al.  Impact of nuclear Piwi elimination on chromatin state in Drosophila melanogaster ovaries , 2014, Nucleic acids research.

[47]  E. Barbar,et al.  NMR Characterization of Self-Association Domains Promoted by Interactions with LC8 Hub Protein , 2014, Computational and structural biotechnology journal.

[48]  A. Yasui,et al.  The Novel Zinc Finger Protein dASCIZ Regulates Mitosis in Drosophila via an Essential Role in Dynein Light-Chain Expression , 2013, Genetics.

[49]  G. Hannon,et al.  A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. , 2013, Molecular cell.

[50]  Dominik Handler,et al.  The Genetic Makeup of the Drosophila piRNA Pathway , 2013, Molecular cell.

[51]  Caifu Chen,et al.  A genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila. , 2013, Molecular cell.

[52]  G. Clore,et al.  Sequence‐specific determination of protein and peptide concentrations by absorbance at 205 nm , 2013, Protein science : a publication of the Protein Society.

[53]  Georgi K Marinov,et al.  Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. , 2013, Genes & development.

[54]  G. Hannon,et al.  Multiple roles for Piwi in silencing Drosophila transposons. , 2013, Genes & development.

[55]  L. Žídek,et al.  Multiple Recognition Motifs in Nucleoporin Nup159 Provide a Stable and Rigid Nup159-Dyn2 Assembly* , 2012, The Journal of Biological Chemistry.

[56]  Julius Brennecke,et al.  Transcriptional Silencing of Transposons by Piwi and Maelstrom and Its Impact on Chromatin State and Gene Expression , 2012, Cell.

[57]  Zhiping Weng,et al.  UAP56 Couples piRNA Clusters to the Perinuclear Transposon Silencing Machinery , 2012, Cell.

[58]  J. Heierhorst,et al.  ATM Substrate Chk2-interacting Zn2+ Finger (ASCIZ) Is a Bi-functional Transcriptional Activator and Feedback Sensor in the Regulation of Dynein Light Chain (DYNLL1) Expression* , 2011, The Journal of Biological Chemistry.

[59]  S. Elgin,et al.  Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line , 2011, Proceedings of the National Academy of Sciences.

[60]  G. Pál,et al.  DYNLL/LC8: a light chain subunit of the dynein motor complex and beyond , 2011, The FEBS journal.

[61]  R. Lehmann,et al.  piRNA Production Requires Heterochromatin Formation in Drosophila , 2011, Current Biology.

[62]  Norbert Perrimon,et al.  A genome-scale shRNA resource for transgenic RNAi in Drosophila , 2011, Nature Methods.

[63]  Gergely Katona,et al.  Directed Evolution Reveals the Binding Motif Preference of the LC8/DYNLL Hub Protein and Predicts Large Numbers of Novel Binders in the Human Proteome , 2011, PloS one.

[64]  K. Asai,et al.  A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila , 2009, Nature.

[65]  Elisar Barbar,et al.  Multivalency in the Assembly of Intrinsically Disordered Dynein Intermediate Chain* , 2009, The Journal of Biological Chemistry.

[66]  A. Wodarz,et al.  Windei, the Drosophila Homolog of mAM/MCAF1, Is an Essential Cofactor of the H3K9 Methyl Transferase dSETDB1/Eggless in Germ Line Development , 2009, PLoS genetics.

[67]  Michael D. Wilson,et al.  ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. , 2009, Methods.

[68]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[69]  Ravi Sachidanandam,et al.  A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. , 2008, Molecular cell.

[70]  E. Barbar Dynein light chain LC8 is a dimerization hub essential in diverse protein networks. , 2008, Biochemistry.

[71]  P. Karplus,et al.  Structure and dynamics of LC8 complexes with KXTQT-motif peptides: swallow and dynein intermediate chain compete for a common site. , 2007, Journal of molecular biology.

[72]  G. Hannon,et al.  MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. , 2007, Developmental cell.

[73]  Manolis Kellis,et al.  Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila , 2007, Cell.

[74]  A. Mahowald,et al.  Establishment of stable cell lines of Drosophila germ-line stem cells , 2006, Proceedings of the National Academy of Sciences.

[75]  E. Barbar,et al.  Heteronuclear NMR identifies a nascent helix in intrinsically disordered dynein intermediate chain: implications for folding and dimerization. , 2006, Journal of molecular biology.

[76]  T. Hays,et al.  The Intermediate Chain of Cytoplasmic Dynein Is Partially Disordered and Gains Structure upon Binding to Light-Chain LC8 † , 2004 .

[77]  T. Hays,et al.  Interactions of cytoplasmic dynein light chains Tctex-1 and LC8 with the intermediate chain IC74. , 2002, Biochemistry.

[78]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[79]  Y. Benjamini,et al.  Controlling the false discovery rate in behavior genetics research , 2001, Behavioural Brain Research.

[80]  K. W. Lo,et al.  The 8-kDa Dynein Light Chain Binds to Its Targets via a Conserved (K/R)XTQT Motif* , 2001, The Journal of Biological Chemistry.

[81]  K. Ray,et al.  Cytoplasmic dynein (ddlc1) mutations cause morphogenetic defects and apoptotic cell death in Drosophila melanogaster , 1996, Molecular and cellular biology.

[82]  G. Chang,et al.  Crystal Structure of the Lactose Operon Repressor and Its Complexes with DNA and Inducer , 1996, Science.

[83]  T. Steitz,et al.  Crystal structure of lac repressor core tetramer and its implications for DNA looping. , 1995, Science.

[84]  SM King,et al.  The M(r) = 8,000 and 11,000 outer arm dynein light chains from Chlamydomonas flagella have cytoplasmic homologues , 1995, The Journal of Biological Chemistry.

[85]  Kuniaki Saito RNAi and overexpression of genes in ovarian somatic cells. , 2014, Methods in molecular biology.

[86]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[87]  L. Kiemeney,et al.  Analysis of Relative Gene Expression Data Using Real-time Quantita- Tive Pcr and the 2 Preanalytic Error Tracking in a Laboratory Medicine Department: Results of a 1-year Experience , 2006 .

[88]  T. Hays,et al.  The intermediate chain of cytoplasmic dynein is partially disordered and gains structure upon binding to light-chain LC8. , 2004, Biochemistry.

[89]  R D Appel,et al.  Protein identification and analysis tools in the ExPASy server. , 1999, Methods in molecular biology.