Evolutionary Takagi-Sugeno Fuzzy Modelling for MR Damper

This paper presents an approach for learning the Takagi-Sugeno (T-S) fuzzy model by Genetic Algorithm (GA). In this approach, the fuzzy rule structure is encoded by binary code in the chromosome in which the position of 1 indicates the selected rules and the sum of 1 indicates the number of rules. The membership function (MF) parameters (centres and bases) are evolved by GA in combining with the pseudo-inversion algorithm for obtaining the consequent parameters. The sum of squared error (SSE) between the true output and the T-S model prediction is used as objective function. Then, this approach is applied to the modelling of dynamic behaviour of a magneto-rheological (MR) damper which shows highly nonlinear characteristics due to hysteretic phenomenon. It is shown by the validation test that the developed T-S fuzzy model can represent the dynamic behaviour of the MR damper satisfactorily.

[1]  Shirley J. Dyke,et al.  PHENOMENOLOGICAL MODEL FOR MAGNETORHEOLOGICAL DAMPERS , 1997 .

[2]  Nikola K. Kasabov,et al.  DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction , 2002, IEEE Trans. Fuzzy Syst..

[3]  D.P. Filev,et al.  An approach to online identification of Takagi-Sugeno fuzzy models , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[4]  Chang-Hyun Kim,et al.  Evolving Compact and Interpretable Takagi–Sugeno Fuzzy Models With a New Encoding Scheme , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[5]  Russell C. Eberhart,et al.  Implementation of evolutionary fuzzy systems , 1999, IEEE Trans. Fuzzy Syst..