Non-collinear magnetism with analytic Bond-Order Potentials

The theory of analytic Bond-Order Potentials as applied to non-collinear magnetic structures of transition metals is extended to take into account explicit rotations of Hamiltonian and local moment matrix elements between locally and globally defined spin-coordinate systems. Expressions for the gradients of the energy with respect to the Hamiltonian matrix elements, the interatomic forces and the magnetic torques are derived. The method is applied to simulations of the rotation of magnetic moments in α iron, as well as α and β manganese, based on d-valent orthogonal tight-binding parametrizations of the electronic structure. A new weighted-average terminator is introduced to improve the convergence of the Bond-Order Potential energies and torques with respect to tight-binding reference values, although the general behavior is qualitatively correct for low-moment expansions.

[1]  Ralf Drautz,et al.  Valence-dependent analytic bond-order potential for magnetic transition metals , 2011 .

[2]  Thomas Hammerschmidt,et al.  Convergence of an analytic bond-order potential for collinear magnetism in Fe , 2014 .

[3]  G. Ackland,et al.  Metallic-covalent interatomic potential for carbon in iron , 2008 .

[4]  Ralf Drautz,et al.  Valence-dependent analytic bond-order potential for transition metals , 2006 .

[5]  Two-band second moment model for transition metals and alloys , 2005, cond-mat/0505060.

[6]  K. Chawla,et al.  Mechanical Behavior of Materials , 1998 .

[7]  D. Pettifor,et al.  The Recursion Method and Its Applications , 1986 .

[8]  J. Hafner,et al.  Understanding the complex metallic element Mn. I. Crystalline and noncollinear magnetic structure of α-Mn , 2003 .

[9]  H. Hasegawa,et al.  Microscopic Theory of the Temperature-Pressure Phase Diagram of Iron , 1983 .

[10]  R. Muniz,et al.  Spin waves in ferromagnetic transition metals. II. Iron and its alloys , 1985 .

[11]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[12]  V. Heine,et al.  Electronic structure based on the local atomic environment for tight-binding bands. II , 1972 .

[13]  E. C. Stoner Collective Electron Ferromagnetism. II. Energy and Specific Heat , 1939 .

[14]  Aoki,et al.  Bond-order potentials: Theory and implementation. , 1996, Physical review. B, Condensed matter.

[15]  M. K. Wilkinson,et al.  NEUTRON DIFFRACTION STUDIES OF VARIOUS TRANSITION ELEMENTS , 1953 .

[16]  R. Feynman Forces in Molecules , 1939 .

[17]  Jürgen Kübler,et al.  Density functional theory of non-collinear magnetism , 1988 .

[18]  Georg K. H. Madsen,et al.  Optimized orthogonal tight-binding basis: Application to iron , 2011 .

[19]  S. Dudarev,et al.  Magnetic cluster expansion model for bcc-fcc transitions in Fe and Fe-Cr alloys , 2010 .

[20]  V. Heine,et al.  Magnetism in iron around the Curie temperature: recursion calculations on regular spin configuration, with a full SPD Hamiltonian , 1989 .

[21]  Murray S. Daw,et al.  The embedded-atom method: a review of theory and applications , 1993 .

[22]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[23]  D. Pettifor Electronic structure calculations and magnetic properties , 1980 .

[24]  J. Janak,et al.  Uniform susceptibilities of metallic elements , 1977 .

[25]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[26]  F. Cyrot-Lackmann On the electronic structure of liquid transitional metals , 1967 .

[27]  G. Inden The role of magnetism in the calculation of phase diagrams , 1981 .

[28]  Takemi Yamada Magnetism and crystal symmetry of α-Mn , 1970 .

[29]  Bartholomeus Andreas van de Rotten,et al.  A limited memory Broyden method to solve high-dimensional systems of nonlinear equations , 2005 .

[30]  R. Drautz,et al.  Spin-cluster expansion: Parametrization of the general adiabatic magnetic energy hypersurface with ab-initio accuracy , 2004 .

[31]  M. Fähnle,et al.  Spin Interactions in bcc and fcc Fe beyond the Heisenberg Model. , 2011, Physical review letters.

[32]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[33]  Peter M. Derlet,et al.  A ‘magnetic’ interatomic potential for molecular dynamics simulations , 2005 .

[34]  P. Entel,et al.  AB INITIO FULL-POTENTIAL STUDY OF THE STRUCTURAL AND MAGNETIC PHASE STABILITY OF IRON , 1999 .

[35]  D. Nguyen-Manh,et al.  Magnetic bond-order potential for iron. , 2011, Physical review letters.

[36]  Single-Site Functional-Integral Approach to Itinerant-Electron Ferromagnetism , 1979 .

[37]  H. Hellmann,et al.  Einführung in die Quantenchemie , 2015 .

[38]  B. Seiser,et al.  Analytic bond-order potential expansion of recursion-based methods , 2013 .

[39]  G. Shirane,et al.  Magnetic Structure of a-Mn , 1970 .

[40]  A. Voter,et al.  Kernel Polynomial Approximations for Densities of States and Spectral Functions , 1996 .

[41]  Y. Kudasov,et al.  Frustrated lattices of Ising chains , 2012 .

[42]  Ralf Drautz,et al.  Magnetic analytic bond-order potential for modeling the different phases of Mn at zero Kelvin , 2014 .

[43]  Y Ohta,et al.  The tight-binding bond model , 1988 .