Cubic Nonlinearity Driven Up-Conversion in High-Field Plasmonic Hot Carrier Systems

Surface plasmon resonances confine electromagnetic fields to the nanoscale, producing high field strengths suitable for exploiting nonlinear optical properties. We examine the prospect of detecting and utilizing one such property in plasmonic metals: the imaginary part of the cubic susceptibility, which corresponds to two plasmons decaying together to produce high energy carriers. Here we present ab initio predictions of the rates and carrier distributions generated by direct interband and phonon-assisted intraband transitions in one and two-plasmon decay. We propose detection of the higher energy carriers generated from two-plasmon decays that are inaccessible in one-plasmon decay as a viable signature of these processes in ultrafast experiments.

[1]  Hui Zhang,et al.  Optical Generation of Hot Plasmonic Carriers in Metal Nanocrystals: The Effects of Shape and Field Enhancement , 2014 .

[2]  A S Sørensen,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[3]  Bernard Kippelen,et al.  A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films , 2010 .

[4]  M. Centini,et al.  Second- and third-harmonic generation in metal-based structures , 2010 .

[5]  P. Biagioni,et al.  Dynamics of four-photon photoluminescence in gold nanoantennas. , 2011, Nano letters.

[6]  N. Zheludev,et al.  Cubic optical nonlinearity of free electrons in bulk gold. , 1995, Optics letters.

[7]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[8]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[9]  Viktoriia E. Babicheva,et al.  Hot Electron Photoemission from Plasmonic Nanostructures: The Role of Surface Photoemission and Transition Absorption , 2015 .

[10]  L. Novotný,et al.  Nonlinear excitation of surface plasmon polaritons by four-wave mixing. , 2008, Physical review letters.

[11]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[12]  Ravishankar Sundararaman,et al.  Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. , 2016, ACS nano.

[13]  Jiangtian Li,et al.  Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. , 2012, Journal of the American Chemical Society.

[14]  A. P. Sukhorukov,et al.  Femtosecond-pulse control in nonlinear plasmonic systems , 2014 .

[15]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[16]  H. Atwater,et al.  Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion , 2016 .

[17]  R. V. Van Duyne,et al.  A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. , 2007, Journal of the American Chemical Society.

[18]  Nathan S. Lewis,et al.  Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates , 2014 .

[19]  Stephan W. Koch,et al.  Classical theory for second-harmonic generation from metallic nanoparticles. Phys Rev B 79:235109 , 2008, 0807.3575.

[20]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[21]  William A. Goddard,et al.  Ab initio phonon coupling and optical response of hot electrons in plasmonic metals , 2016, 1602.00625.

[22]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[23]  Hui Zhang,et al.  Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications , 2014 .

[24]  J. M. Elson,et al.  Photon Interactions at a Rough Metal Surface , 1971 .

[25]  John E. Sipe,et al.  Surface and bulk contributions to the second-order nonlinear optical response of a gold film , 2009 .

[26]  K. A. O'Donnell,et al.  Characterization of the second-harmonic response of a silver-air interface , 2005 .

[27]  Wei Wang,et al.  Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation , 2014, Proceedings of the National Academy of Sciences.

[28]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.

[29]  Richard P Van Duyne,et al.  Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy. , 2011, The journal of physical chemistry letters.

[30]  Ajay Nahata,et al.  Enhanced nonlinear optical conversion from a periodically nanostructured metal film. , 2003, Optics letters.

[31]  Nikolay I. Zheludev,et al.  Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008 .

[32]  Christian Mätzler,et al.  MATLAB Functions for Mie Scattering and Absorption , 2002 .

[33]  Giovanni Onida,et al.  First-principles calculation of the plasmon resonance and of the reflectance spectrum of silver in the GW approximation , 2002 .

[34]  Nicolae C. Panoiu,et al.  Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures , 2009 .

[35]  Florian Libisch,et al.  Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. , 2013, Nano letters.

[36]  M. A. Vincenti,et al.  Singularity-driven second- and third-harmonic generation at -near-zero crossing points , 2011 .

[37]  Lukas Novotny,et al.  Characterization of nanoplasmonic structures by locally excited photoluminescence , 2003 .

[38]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[39]  Robert W Boyd,et al.  Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals. , 2004, Physical review letters.

[40]  E Di Fabrizio,et al.  Hot-electron nanoscopy using adiabatic compression of surface plasmons. , 2013, Nature nanotechnology.

[41]  G. Wiederrecht,et al.  Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. , 2015, Nature nanotechnology.

[42]  Ravishankar Sundararaman,et al.  Theoretical predictions for hot-carrier generation from surface plasmon decay , 2014, Nature Communications.

[43]  Younan Xia,et al.  Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach , 2010 .

[44]  Giovanni Onida,et al.  Quasiparticle electronic structure of copper in the GW approximation. , 2002, Physical review letters.

[45]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[46]  Robert W. Boyd,et al.  Z-Scan Measurement of the Nonlinear Absorption of a Thin Gold Film , 1999 .