Uncertainty in modeled upper ocean heat content change

This paper examines the uncertainty in the change in the heat content in the ocean component of a general circulation model. We describe the design and implementation of our statistical methodology. Using an ensemble of model runs and an emulator, we produce an estimate of the full probability distribution function (PDF) for the change in upper ocean heat in an Atmosphere/Ocean General Circulation Model, the Community Climate System Model v. 3, across a multi-dimensional input space. We show how the emulator of the GCM’s heat content change and hence, the PDF, can be validated and how implausible outcomes from the emulator can be identified when compared to observational estimates of the metric. In addition, the paper describes how the emulator outcomes and related uncertainty information might inform estimates of the same metric from a multi-model Coupled Model Intercomparison Project phase 3 ensemble. We illustrate how to (1) construct an ensemble based on experiment design methods, (2) construct and evaluate an emulator for a particular metric of a complex model, (3) validate the emulator using observational estimates and explore the input space with respect to implausible outcomes and (4) contribute to the understanding of uncertainties within a multi-model ensemble. Finally, we estimate the most likely value for heat content change and its uncertainty for the model, with respect to both observations and the uncertainty in the value for the input parameters.

[1]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[2]  Robin K. S. Hankin,et al.  Bayesian calibration of a flood inundation model using spatial data , 2011 .

[3]  Jeremy E. Oakley,et al.  Uncertain Judgements: Eliciting Experts' Probabilities , 2006 .

[4]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[5]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[6]  Robin Tokmakian,et al.  On the Use of Emulators with Extreme and Highly Nonlinear Geophysical Simulators , 2012 .

[7]  Jonathan Rougier,et al.  Analyzing the Climate Sensitivity of the HadSM3 Climate Model Using Ensembles from Different but Related Experiments , 2009 .

[8]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[9]  E. Hunke,et al.  An Elastic–Viscous–Plastic Model for Sea Ice Dynamics , 1996 .

[10]  Stephen G. Yeager,et al.  The global climatology of an interannually varying air–sea flux data set , 2009 .

[11]  Sallie Keller-McNulty,et al.  Combining experimental data and computer simulations, with an application to flyer plate experiments , 2006 .

[12]  Aixue Hu,et al.  Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods , 2011 .

[13]  B. Hewitson,et al.  Good Practice Guidance Paper on Assessing and Combining Multi Model Climate Projections , 2010 .

[14]  James O. Berger,et al.  A Framework for Validation of Computer Models , 2007, Technometrics.

[15]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[16]  W. Collins,et al.  The Community Climate System Model: CCSM3 , 2004 .

[17]  James J. Hack,et al.  The Low-Resolution CCSM3 , 2006 .

[18]  B. Huang,et al.  Sensitivities of deep-ocean heat uptake and heat content to surface fluxes and subgrid-scale parameters in an ocean GCM with idealized geometry , 2002 .

[19]  Nathalie Lefèvre,et al.  Estimating pCO2 from sea surface temperatures in the Atlantic gyres , 2002 .

[20]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[21]  T. Wigley,et al.  Analytical solution for the effect of increasing CO2 on global mean temperature , 1985, Nature.

[22]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[23]  J. Hansen,et al.  Climate Response Times: Dependence on Climate Sensitivity and Ocean Mixing , 1985, Science.

[24]  Chris E. Forest,et al.  Statistical calibration of climate system properties , 2009 .

[25]  S. Levitus,et al.  Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems , 2007 .

[26]  Anthony O'Hagan,et al.  Diagnostics for Gaussian Process Emulators , 2009, Technometrics.

[27]  B. Sansó,et al.  Inferring climate system properties using a computer model , 2008 .

[28]  A. O'Hagan,et al.  Probabilistic sensitivity analysis of complex models: a Bayesian approach , 2004 .

[29]  Peter J. Gleckler,et al.  Improved estimates of upper-ocean warming and multi-decadal sea-level rise , 2008, Nature.

[30]  Peter G. Challenor,et al.  Designing a Computer Experiment that Involves Switches , 2011 .

[31]  K. Bryan A Numerical Method for the Study of the Circulation of the World Ocean , 1997 .

[32]  William H. Lipscomb,et al.  An energy-conserving thermodynamic model of sea ice , 1999 .

[33]  Ian Vernon,et al.  Galaxy formation : a Bayesian uncertainty analysis. , 2010 .

[34]  Robin Tokmakian,et al.  An extreme non-linear example of the use of emulators with simulators using the Stommel Model , 2010 .

[35]  K. Bryan CLIMATE AND THE OCEAN CIRCULATION , 1969 .

[36]  J. Rougier,et al.  Precalibrating an intermediate complexity climate model , 2018 .

[37]  Bryan CLIMATE AND THE OCEAN CIRCULATION 111 . THE OCEAN MODEL , 1969 .

[38]  Shan Sun,et al.  Climate Simulations for 1951-2050 with a Coupled Atmosphere-Ocean Model , 2003 .

[39]  Susan Wijffels,et al.  On potential causes for an under‐estimated global ocean heat content trend in CMIP3 models , 2010 .

[40]  M. Collins,et al.  The impact of perturbations to ocean-model parameters on climate and climate change in a coupled model , 2010 .

[41]  L. Gordon,et al.  The effect of temperature on carbon dioxide partial pressures in seawater , 1973 .

[42]  D. Nychka,et al.  Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis , 2007 .

[43]  J. Willis,et al.  Future observations for monitoring global ocean heat content , 2010 .

[44]  S. Gorshkov,et al.  World ocean atlas , 1976 .

[45]  Dave Higdon,et al.  Combining Field Data and Computer Simulations for Calibration and Prediction , 2005, SIAM J. Sci. Comput..

[46]  K. Taylor,et al.  The Community Climate System Model , 2001 .

[47]  D. Wolf-Gladrow,et al.  On the role of heat fluxes in the uptake of anthropogenic carbon in the North Atlantic , 2002 .

[48]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[49]  S. Levitus,et al.  World ocean atlas 2005. Vol. 1, Temperature , 2006 .

[50]  M. Kimoto,et al.  Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections , 2009 .

[51]  John F. B. Mitchell,et al.  THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research , 2007 .