Strong positivity property and a related inverse source problem for multi-term time-fractional diffusion equations

In this article, we consider the diffusion equation with multi-term time-fractional derivatives. We first derive that the solution is positive when the source term is nonpositive by a subordination principle for the solution. As an application, we prove that the uniqueness of the inverse problem on the determination of the temporally varying source term by integral type information in a subdomain. Finally, several numerical experiments are presented to show the accuracy and efficiency of the algorithm.

[1]  J. Schiff The Laplace Transform: Theory and Applications , 1999 .

[2]  Masahiro Yamamoto,et al.  Carleman estimates for the time-fractional advection-diffusion equations and applications , 2017, Inverse Problems.

[3]  E. C. Titchmarsh The Zeros of Certain Integral Functions , 1926 .

[4]  Masahiro Yamamoto,et al.  Time-Fractional Differential Equations , 2020 .

[5]  William Rundell,et al.  Strong maximum principle for fractional diffusion equations and an application to an inverse source problem , 2015, 1507.00845.

[6]  Masahiro Yamamoto,et al.  Uniqueness in inverse boundary value problems for fractional diffusion equations , 2014, 1404.7024.

[7]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[8]  Zewen Wang,et al.  Identification of a time-dependent source term for a time fractional diffusion problem , 2017 .

[9]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[10]  Salman A. Malik,et al.  DETERMINATION OF A SOURCE TERM FOR A TIME FRACTIONAL DIFFUSION EQUATION WITH AN INTEGRAL TYPE OVER-DETERMINING CONDITION , 2013 .

[11]  K. Miller,et al.  Completely monotonic functions , 2001 .

[12]  Masahiro Yamamoto,et al.  Time-fractional diffusion equation in the fractional Sobolev spaces , 2015 .

[13]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[14]  Mohammed Al-Refai,et al.  Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives , 2015, Appl. Math. Comput..

[15]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[16]  Masahiro Yamamoto,et al.  Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations , 2014 .

[17]  Masahiro Yamamoto,et al.  Coefficient inverse problem for a fractional diffusion equation , 2013 .

[18]  T. Wei,et al.  An inverse time-dependent source problem for a time-fractional diffusion equation , 2016 .

[19]  S. Lang Complex Analysis , 1977 .

[20]  Yavar Kian,et al.  Determination of time dependent factors of coefficients in fractional diffusion equations , 2015, 1501.01945.

[21]  Yuri Luchko,et al.  Maximum principle for the time-fractional PDEs , 2019, Fractional Differential Equations.

[22]  William Rundell,et al.  A tutorial on inverse problems for anomalous diffusion processes , 2015, 1501.00251.

[23]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[24]  Zhiyuan Li,et al.  Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients , 2013, Appl. Math. Comput..

[25]  Haibing Wang,et al.  On the well-posedness of determination of two coefficients in a fractional integrodifferential equation , 2014 .

[26]  Rico Zacher Weak Solutions of Abstract Evolutionary Integro-Differential Equations in Hilbert Spaces , 2009 .

[27]  Jigen Peng,et al.  Harnack's inequality for a space–time fractional diffusion equation and applications to an inverse source problem , 2017 .

[28]  Yubin Zhou,et al.  Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation , 2013 .

[29]  Masahiro Yamamoto,et al.  Unique continuation principle for the one-dimensional time-fractional diffusion equation , 2018, Fractional Calculus and Applied Analysis.

[30]  Yikan Liu,et al.  Strong maximum principle for multi-term time-fractional diffusion equations and its application to an inverse source problem , 2015, Comput. Math. Appl..

[31]  B. Berkowitz,et al.  Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. , 2003, Journal of contaminant hydrology.

[32]  Yury Luchko,et al.  Maximum principle for the generalized time-fractional diffusion equation , 2009 .

[33]  Emilia G. Bazhlekova,et al.  Subordination approach to multi-term time-fractional diffusion-wave equations , 2017, J. Comput. Appl. Math..

[34]  Daijun Jiang,et al.  Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations , 2016, 1607.05917.

[35]  Ying Zhang,et al.  Inverse source problem for a fractional diffusion equation , 2011 .

[36]  Masahiro Yamamoto,et al.  Initial-boundary value problems for multi-term time-fractional diffusion equations with \begin{document}$ x $\end{document}-dependent coefficients , 2018, Evolution Equations & Control Theory.

[37]  Yikan Liu,et al.  Reconstruction of the temporal component in the source term of a (time-fractional) diffusion equation , 2017, 1704.04987.

[38]  The extended Jordan's lemma and the relation between laplace transform and fourier transform , 1997 .