An architecture for fault tolerant controllers

A general architecture for fault tolerant control is proposed. The architecture is based on the (primary) YJBK parameterization of all stabilizing compensators and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The approach suggested can be applied for additive faults, parametric faults and for system structural changes. The modelling for each of these fault classes is described. The method allows for design of passive as well as for active fault handling. Also, the related design method can be fitted either to guarantee stability or to achieve graceful degradation in the sense of guaranteed degraded performance. A number of fault diagnosis problems, fault tolerant control problems, and feedback control with fault rejection problems are formulated/considered, mainly from a fault modelling point of view. The method is illustrated on a servo example including an additive fault and a parametric fault.

[1]  N. Eva Wu,et al.  Control reconfigurability of linear time-invariant systems , 2000, Autom..

[2]  Jakob Stoustrup,et al.  Fault tolerant feedback control using the Youla parameterization , 2001, 2001 European Control Conference (ECC).

[3]  N. E. Wu,et al.  An approach to configuration of robust control systems for robust failure detection , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[4]  Abdel Aitouche,et al.  Fault tolerance analysis of sensor systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[5]  Marcel Staroswiecki,et al.  From control to supervision , 2000, Annu. Rev. Control..

[6]  M. Grimble Robust Industrial Control Systems: Optimal Design Approach for Polynomial Systems , 1994 .

[7]  Brian D. O. Anderson,et al.  From Youla-Kucera to Identification, Adaptive and Nonlinear Control , 1998, Autom..

[8]  Dante C. Youla,et al.  Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .

[9]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .

[10]  Andres Marcos,et al.  Reconfigurable LPV control design for Boeing 747-100/200 longitudinal axis , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[11]  John B. Moore,et al.  High Performance Control , 1997 .

[12]  Michel Kinnaert,et al.  Diagnosis and Fault-Tolerant Control , 2006 .

[13]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[14]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[15]  Hans Henrik Niemann,et al.  Fault estimation—a standard problem approach , 2002 .

[16]  Raman K. Mehra,et al.  STABLE ADAPTIVE FAULT-TOLERANT CONTROL OF OVERACTUATED AIRCRAFT USING MULTIPLE MODELS, SWITCHING AND TUNING * , 1998 .

[17]  N. Eva Wu,et al.  Feedback design in control reconfigurable systems , 1996 .

[18]  Ron J. Patton,et al.  Fault-Tolerant Control: The 1997 Situation , 1997 .

[19]  Stephen P. Boyd,et al.  A New CAD Method and Associated Architectures for Linear Controllers , 1987, 1987 American Control Conference.

[20]  Jakob Stoustrup,et al.  Switching between multivariable controllers , 2004 .

[21]  J. Bentsman,et al.  Robust Industrial Control: Optimal Design Approach for Polynomial Systems [Book Reviews] , 1996, IEEE Transactions on Automatic Control.

[22]  Janos Gertler,et al.  Fault detection and diagnosis in engineering systems , 1998 .

[23]  Marcel Staroswiecki ON RECONFIGURABILITY WITH RESPECT TO ACTUATOR FAILURES , 2002 .

[24]  N. E. Wu Reconfigurable control design: achieving stability robustness and failure tracking , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[25]  Pierre Apkarian,et al.  Exact observer-based structures for arbitrary compensators , 1999 .

[26]  N. E. Wu,et al.  Concepts and methods in fault-tolerant control , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[27]  Diederich Hinrichsen,et al.  Control of Uncertain Systems , 1990 .

[28]  Zhang Ren,et al.  A new controller architecture for high performance, robust, and fault-tolerant control , 2001, IEEE Trans. Autom. Control..

[29]  Jakob Stoustrup,et al.  Reliable control using the primary and dual Youla parameterizations , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[30]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.

[31]  Vincent D. Blondel,et al.  Fault tolerant control: a simultaneous stabilization result , 2004, IEEE Transactions on Automatic Control.

[32]  Ali Saberi,et al.  Exact, almost and optimal input decoupled (delayed) observers , 2000 .

[33]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[34]  Steven X. Ding,et al.  Frequency domain approach to optimally robust residual generation and evaluation for model-based fault diagnosis , 1994, Autom..

[35]  Jakob Stoustrup,et al.  Passive fault tolerant control of a double inverted pendulum—a case study , 2003 .

[36]  Jovan D. Boskovic,et al.  A multiple model-based reconfigurable flight control system design , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[37]  Dante C. Youla,et al.  Modern Wiener--Hopf design of optimal controllers Part I: The single-input-output case , 1976 .

[38]  Jakob Stoustrup,et al.  Passive Fault tolerant Control of an Inverted Double Pendulum: A Case Study Example , 2003 .