ABSTRACT UAV (Unmanned Aerial Vehicle) have an INS(Inertial Navigation System) equipment and also have an electro-optical Equipment for mission. This paper proposes the vision based attitude estimation algorithm using Kalman Filter and Optical flow for UAV. Optical flow is acquired from the movie of camera which is equipped on UAV and UAV's attitude is measured from optical flow. In this paper, Kalman Filter has been used for the settlement of the low reliability and estimation of UAV's attitude. Algorithm verification was performed through experiments. The experiment has been used rate table and real flight video. Then, this paper shows the verification result of UAV's attitude estimation algorithm. When the rate table was tested, the error was in 2 degree and the tendency was similar with AHRS measurement states. However, on the experiment of real flight movie, maximum yaw error was 21 degree and Maximum pitch error was 7.8 degree. 초 록 UAV는 임무 수행을 위한 INS 장비와 광학 장비를 갖추고 있다. 이 논문에서는 UAV를 위한 알고리즘으로 칼만 필터와 광류를 이용하는 영상기반 자세추정 알고리즘을 제안한다. 광류는 UAV에 장착된 카메라의 영상으로부터 획득하며 UAV의 자세는 광류를 통해 측정된다. 이 논문에서 UAV 자세의 추정과 낮은 신뢰성을 보완하기위해 칼만 필터를 사용한다. 그리고 실험을 통해 알고리즘을 검증하였다. Rate table과 실제 비행영상을 이용하여 실험 하였으며, 본 논문에서 UAV의 자세 추정 알고리즘 검증 결과를 보였다. Rate table 실험에서 오차는 2도 이내였으며, AHRS를 통해 측정한 결과와 비슷한 경향을 보인다. 그러나 실제 비행 영상 실험에서 최대 Yaw 오차는 21도였으며, 최대 Pitch 오차는 7.8도로 나타났다. Key Words : Optical Flow(광류), Kalman Filter(칼만 필터), Mono vision based attitude estimation(단안 영상 기반 자세 추정),
[1]
David J. Fleet,et al.
Performance of optical flow techniques
,
1994,
International Journal of Computer Vision.
[2]
Ehud Rivlin,et al.
Finding the focus of expansion and estimating range using optical flow images and a matched filter
,
2004,
Machine Vision and Applications.
[3]
Banavar Sridhar,et al.
Vision-Based Position and Attitude Determination for Aircraft Night Landing
,
1996
.
[4]
Peter J. O'Shea,et al.
Tightly Coupled GNSS and Vision Navigation for Unmanned Air Vehicle Applications
,
2005
.
[5]
Rodney A. Walker,et al.
Fixed Wing UAV Navigation and Control through Integrated GNSS and Vision
,
2005
.
[6]
Tarek Hamel,et al.
Dynamic Image-Based Visual Servo Control Using Centroid and Optic Flow Features
,
2008
.
[7]
G. A. Thomas,et al.
A versatile camera position measurement system for virtual reality TV production
,
1997
.