Measurement of 6Li burn-up reaction rate using a single crystal CVD diamond detector under fast neutron irradiation environment

[1]  H. Yamanishi,et al.  Thermal Neutron Measurement Capability of a Single Crystal CVD Diamond Detector near the Reactor Core Region of UTR-KINKI , 2022, Plasma and Fusion Research.

[2]  M. Osakabe,et al.  A comprehensive evaluation of the thermal neutron detection efficiency by a single crystal CVD diamond detector with a LiF thermal neutron converter , 2022, Fusion Engineering and Design.

[3]  S. Toyama,et al.  Neutron energy spectrum measurement using CLYC7-based compact neutron emission spectrometer in the Large Helical Device , 2021, Journal of Instrumentation.

[4]  R. Stieglitz,et al.  Integrated design of breeding blanket and ancillary systems related to the use of helium or water as a coolant and impact on the overall plant design , 2021, Fusion Engineering and Design.

[5]  C. Verona,et al.  Properties of Diamond-Based Neutron Detectors Operated in Harsh Environments , 2021, Journal of Nuclear Engineering.

[6]  M. Osakabe,et al.  Thermal neutron measurement by single crystal CVD diamond detector applied with the pulse shape discrimination during deuterium plasma experiment in LHD , 2020 .

[7]  A. Sagara,et al.  Maintainability of the helical reactor FFHR-c1 equipped with the liquid metal divertor and cartridge-type blankets , 2018, Fusion Engineering and Design.

[8]  T. Kobuchi,et al.  The large helical device vertical neutron camera operating in the MHz counting rate range. , 2018, The Review of scientific instruments.

[9]  Y. Oya,et al.  Tritium trapping states induced by lithium-depletion in Li 2 TiO 3 , 2017 .

[10]  Eiichi Wakai,et al.  IFMIF, the European-Japanese efforts under the Broader Approach Agreement towards a Li(d,xn) neutron source:current status and future options , 2016 .

[11]  E. Griesmayer,et al.  Ionization signals from diamond detectors in fast-neutron fields , 2016 .

[12]  Hu Liqun,et al.  Time Dependent DD Neutrons Measurement Using a Single Crystal Chemical Vapor Deposition Diamond Detector on EAST , 2016 .

[13]  Y. Sakamoto,et al.  Design study of blanket structure based on a water-cooled solid breeder for DEMO , 2015 .

[14]  Paolo Finocchiaro,et al.  Pulse-shape analysis for gamma background rejection in thermal neutron radiation using CVD diamond detectors , 2015 .

[15]  Jinwei Yang,et al.  Application of a single crystal chemical vapor deposition diamond detector for deuteron plasma neutron measurement , 2014 .

[16]  A. Sagara,et al.  Design studies on three-dimensional issues for liquid blanket systems in helical reactor FFHR , 2012 .

[17]  K. Shibata,et al.  JENDL-4.0: A New Library for Nuclear Science and Engineering , 2011 .

[18]  Damien Fasel,et al.  Availability of lithium in the context of future D-T fusion reactors , 2005 .

[19]  A. H. Wapstra,et al.  The AME2003 atomic mass evaluation . (II). Tables, graphs and references , 2003 .

[20]  Zhong He,et al.  Review of the Shockley–Ramo theorem and its application in semiconductor gamma-ray detectors , 2001 .

[21]  R. Kass,et al.  Recent results on CVD diamond radiation sensors , 1998 .

[22]  C. Canali,et al.  Hole-drift velocity in natural diamond , 1981 .

[23]  P. F. Manfredi,et al.  Transport Properties of Natural Diamond Used as Nuclear Particle Detector for a Wide Temperatue Range , 1979, IEEE Transactions on Nuclear Science.

[24]  W. Shockley Currents to Conductors Induced by a Moving Point Charge , 1938 .

[25]  T. Nishitani,et al.  Benchmark Calculation of d-Li Thick Target Neutron Yield by JENDL / DEU-2020 for IFMIF and Similar Facilities , 2021 .

[26]  S. Matsuyama,et al.  Improvement and recent applications of the Tohoku microbeam system , 2014 .