A Review on Link Prediction in Social Network

Social network analysis is an evolving field of research and link prediction problem shows a vital role for prediction of social network structure. This paper emphases on prevailing research on link prediction problem. Prevailing researches reveal that link prediction problem complexity, available solutions effective group communication management and social link consciousness. The link prediction problem across associated networks can include anchor link prediction problem and link transfer through associated heterogeneous networks. This paper summarizes recent growth about link prediction algorithms and survey of all the prevailing link prediction techniques.

[1]  M. Newman Clustering and preferential attachment in growing networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  T. Sørensen,et al.  A method of establishing group of equal amplitude in plant sociobiology based on similarity of species content and its application to analyses of the vegetation on Danish commons , 1948 .

[3]  A. Barabasi,et al.  Evolution of the social network of scientific collaborations , 2001, cond-mat/0104162.

[4]  Linyuan Lü,et al.  Predicting missing links via local information , 2009, 0901.0553.

[5]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[6]  Sunil Kumar,et al.  An Experimental Comparison of the Link Prediction Techniques in Social Networks , 2014 .

[7]  Leo Katz,et al.  A new status index derived from sociometric analysis , 1953 .

[8]  Mahesh Panchal,et al.  A Survey of Graph Pattern Mining Algorithm and Techniques , 2013 .

[9]  Ying Wah Teh,et al.  Data Mining Techniques in Index Techniques , 2003 .

[10]  A. K. Pujari,et al.  Data Mining Techniques , 2006 .

[11]  M. Newman,et al.  Vertex similarity in networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[14]  Xingquan Zhu,et al.  Knowledge Discovery and Data Mining: Challenges and Realities , 2007 .

[15]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .

[16]  Linyuan Lu,et al.  Link prediction based on local random walk , 2010, 1001.2467.

[17]  A. Barab,et al.  Evolution of the social network of scienti $ c collaborations , 2002 .

[18]  Jian Pei,et al.  Data Mining: Concepts and Techniques, 3rd edition , 2006 .

[19]  Jennifer Widom,et al.  SimRank: a measure of structural-context similarity , 2002, KDD.

[20]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[21]  David Liben-Nowell,et al.  The link-prediction problem for social networks , 2007 .

[22]  Gueorgi Kossinets Effects of missing data in social networks , 2006, Soc. Networks.