Self-starting bi-chromatic LiNbO3 soliton microcomb

The wide range of functions that are possible with lithium niobate (LN) waveguide devices, including phase and intensity modulation, second-harmonic generation, and difference-frequency generation, makes it attractive as a potential microcomb material. LN microcombs would combine essential comb self-referencing and control functions with the pulse generation process in a single microresonator device. Here, we demonstrate a soliton microcomb in a monolithic high-Q LN resonator. Direct frequency doubling of the soliton spectrum is observed inside the same cavity. The LN soliton mode-locking process also self-starts and allows bi-directional switching of soliton states, effects that are shown to result from the LN photorefractive effect. The Kerr solitons exhibit a self-frequency shift resulting from the Raman effect of LN. This microcomb platform can dramatically simplify miniature time keeping, frequency synthesis/division, and spectroscopy systems. Moreover, direct generation of femtosecond timescale pulses within LN microresonators can benefit quantum photonics and signal processing systems.

[1]  Zin Lin,et al.  Integrated high quality factor lithium niobate microdisk resonators. , 2014, Optics express.

[2]  Maxim Karpov,et al.  Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[3]  H. Tang,et al.  Efficient visible frequency comb generation via Cherenkov radiation from a Kerr microcomb , 2017, 1704.04264.

[4]  Kerry J. Vahala,et al.  Microresonator soliton dual-comb spectroscopy , 2016, Science.

[5]  C. Koos,et al.  Ultrafast optical ranging using microresonator soliton frequency combs , 2017, Science.

[6]  Michael L. Gorodetsky,et al.  Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators , 2016, Nature Physics.

[7]  Wei Zhao,et al.  Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator , 2018, AIP Advances.

[8]  K. Vahala,et al.  Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities. , 2016, Optics letters.

[9]  Michal Lipson,et al.  On-chip Frequency Comb Generation at Visible Wavelengths via Simultaneous Second-and Third-order Optical Nonlinearities References and Links , 2022 .

[10]  Steven A. Miller,et al.  Thermally controlled comb generation and soliton modelocking in microresonators. , 2016, Optics letters.

[11]  M. Wood,et al.  Hybrid silicon and lithium niobate electro-optical ring modulator , 2014 .

[12]  Jonathan M. Silver,et al.  Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser , 2018, Optica.

[13]  Intracavity characterization of micro-comb generation in the single soliton regime , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[14]  H. Tang,et al.  Soliton microcomb generation at 2  μm in z-cut lithium niobate microring resonators. , 2019, Optics letters.

[15]  Marko Loncar,et al.  Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation , 2018, Nature Communications.

[16]  J. Gordon,et al.  Theory of the soliton self-frequency shift. , 1986, Optics letters.

[17]  K. Vahala,et al.  Soliton microcomb range measurement , 2017, Science.

[18]  T. Gaylord,et al.  Lithium niobate: Summary of physical properties and crystal structure , 1985 .

[19]  Michal Lipson,et al.  Nanophotonic lithium niobate electro-optic modulators. , 2017, Optics express.

[20]  Miles H. Anderson,et al.  A microphotonic astrocomb , 2017, Nature Photonics.

[21]  Q. Lin,et al.  High-quality lithium niobate photonic crystal nanocavities , 2017, 1706.08904.

[22]  Luigi Moretti,et al.  Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions , 2005 .

[23]  Zheng Gong,et al.  Efficient Generation of a Near-visible Frequency Comb via Cherenkov-like Radiation from a Kerr Microcomb , 2018, Physical Review Applied.

[24]  V. Brasch,et al.  Photonic chip–based optical frequency comb using soliton Cherenkov radiation , 2014, Science.

[25]  Michal Lipson,et al.  Modelocked mid-infrared frequency combs in a silicon microresonator , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[26]  Scott A. Diddams,et al.  Searching for Exoplanets Using a Microresonator Astrocomb , 2018, Nature Photonics.

[27]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[28]  John E. Bowers,et al.  Thin film wavelength converters for photonic integrated circuits , 2016 .

[29]  Kerry J. Vahala,et al.  Soliton frequency comb at microwave rates in a high-Q silica microresonator , 2015 .

[30]  S. Coen,et al.  Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer , 2010 .

[31]  Xu Yi,et al.  Active capture and stabilization of temporal solitons in microresonators. , 2016, Optics letters.

[32]  Michal Lipson,et al.  On-chip dual-comb source for spectroscopy , 2016, Science Advances.

[33]  A. Matsko,et al.  Lithium Niobate Whispering Gallery Resonators: Applications and Fundamental Studies , 2014 .

[34]  S. Diddams,et al.  Soliton crystals in Kerr resonators , 2016, 1610.00080.

[35]  Sasan Fathpour,et al.  Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics , 2014 .

[36]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[37]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2017, Nature.

[38]  Ingo Breunig,et al.  Cascaded second-order optical nonlinearities in on-chip micro rings. , 2017, Optics express.

[39]  Dibyendu Dey,et al.  Erbium-Doped Lithium Niobate Waveguide Lasers , 2005, IEICE Trans. Electron..

[40]  Qiang Lin,et al.  On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. , 2017, Optics express.

[41]  Miles H. Anderson,et al.  Microresonator-based solitons for massively parallel coherent optical communications , 2016, Nature.

[42]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2018, Nature.

[43]  Gabriel M. Rebeiz,et al.  Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. , 2018, Optics express.

[44]  A. A. Savchenkov,et al.  High spectral purity Kerr frequency comb radio frequency photonic oscillator , 2015, Nature Communications.

[45]  Qing Li,et al.  Stably accessing octave-spanning microresonator frequency combs in the soliton regime. , 2016, Optica.

[46]  K. Vahala,et al.  Dynamical thermal behavior and thermal self-stability of microcavities , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..