Performing private database queries in a real-world environment using a quantum protocol

In the well-studied cryptographic primitive 1-out-of-N oblivious transfer, a user retrieves a single element from a database of size N without the database learning which element was retrieved. While it has previously been shown that a secure implementation of 1-out-of-N oblivious transfer is impossible against arbitrarily powerful adversaries, recent research has revealed an interesting class of private query protocols based on quantum mechanics in a cheat sensitive model. Specifically, a practical protocol does not need to guarantee that the database provider cannot learn what element was retrieved if doing so carries the risk of detection. The latter is sufficient motivation to keep a database provider honest. However, none of the previously proposed protocols could cope with noisy channels. Here we present a fault-tolerant private query protocol, in which the novel error correction procedure is integral to the security of the protocol. Furthermore, we present a proof-of-concept demonstration of the protocol over a deployed fibre.

[1]  Jürg Wullschleger,et al.  Unconditional Security From Noisy Quantum Storage , 2009, IEEE Transactions on Information Theory.

[2]  F. Bussières,et al.  TOPICAL REVIEW Prospective applications of optical quantum memories , 2013 .

[3]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[4]  Hoi-Kwong Lo,et al.  Insecurity of Quantum Secure Computations , 1996, ArXiv.

[5]  S. Wehner,et al.  Implementation of two-party protocols in the noisy-storage model , 2009, 0911.2302.

[6]  A. Sørensen,et al.  Quantum interface between light and atomic ensembles , 2008, 0807.3358.

[7]  Nicolas Gisin,et al.  Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. , 2004, Physical review letters.

[8]  Moni Naor,et al.  Distributed Oblivious Transfer , 2000, ASIACRYPT.

[9]  U. Herzog,et al.  Optimum unambiguous discrimination of two mixed quantum states , 2005, quant-ph/0502117.

[10]  Christoph Simon,et al.  Prospective applications of optical quantum memories , 2013, 1306.6904.

[11]  Gilles Brassard,et al.  Experimental loss-tolerant quantum coin flipping , 2011, Nature communications.

[12]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[13]  Philippe Raynal Unambiguous State Discrimination of two density matrices in Quantum Information Theory , 2006 .

[14]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[15]  S. Lloyd,et al.  Experimental quantum private queries with linear optics , 2009 .

[16]  Christoph Simon,et al.  Practical private database queries based on a quantum-key-distribution protocol , 2010, 1002.4360.

[17]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[18]  J. Dynes,et al.  Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate. , 2008, Optics express.

[19]  Seth Lloyd,et al.  Quantum private queries. , 2007, Physical review letters.

[20]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[21]  Hui Chen,et al.  Flexible quantum private queries based on quantum key distribution. , 2011, Optics express.

[22]  Alfredo De Santis,et al.  On Unconditionally Secure Distributed Oblivious Transfer , 2007, Journal of Cryptology.

[23]  G. S. Vernam,et al.  Cipher Printing Telegraph Systems For Secret Wire and Radio Telegraphic Communications , 1926, Transactions of the American Institute of Electrical Engineers.

[24]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[25]  Andrew Chi-Chih Yao,et al.  Quantum bit escrow , 2000, STOC '00.

[26]  S. A. Moiseev,et al.  Photon‐echo quantum memory in solid state systems , 2009 .

[27]  N. Gisin,et al.  Experimental demonstration of quantum secret sharing , 2001 .

[28]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[29]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[30]  M. V. Panduranga Rao,et al.  Towards communication-efficient quantum oblivious key distribution , 2012, 1208.2501.

[31]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[32]  W. Tittel,et al.  Proof-of-concept of real-world quantum key distribution with quantum frames , 2009, 0901.0612.

[33]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[34]  Arjen K. Lenstra,et al.  Factorization of a 768-Bit RSA Modulus , 2010, CRYPTO.

[35]  Xudong Jiang,et al.  An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode. , 2012, The Review of scientific instruments.

[36]  Christian Schaffner Simple protocols for oblivious transfer and secure identification in the noisy-quantum-storage model , 2010, 1002.1495.

[37]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[38]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[39]  J. H. Müller,et al.  Quantum memories , 2010, 1003.1107.

[40]  S. Wehner,et al.  Experimental implementation of bit commitment in the noisy-storage model , 2012, Nature Communications.

[41]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[42]  Michael O. Rabin,et al.  How To Exchange Secrets with Oblivious Transfer , 2005, IACR Cryptol. ePrint Arch..

[43]  S. Wehner,et al.  An experimental implementation of oblivious transfer in the noisy storage model , 2012, Nature Communications.