Targeted Agglutination of Corona Virus by Tapered Chiral Nanoparticles

[1]  Liming Wang,et al.  A nanomaterial targeting the spike protein captures SARS-CoV-2 variants and promotes viral elimination , 2022, Nature Nanotechnology.

[2]  D. Peer,et al.  Nanotechnology-based strategies against SARS-CoV-2 variants , 2022, Nature Nanotechnology.

[3]  Yihao Huang,et al.  Spatially Patterned Neutralizing Icosahedral DNA Nanocage for Efficient SARS-CoV-2 Blocking , 2022, Journal of the American Chemical Society.

[4]  X. Deng,et al.  The PCY-SAG14 phytocyanin module regulated by PIFs and miR408 promotes dark-induced leaf senescence in Arabidopsis , 2022, Proceedings of the National Academy of Sciences.

[5]  N. Kotov,et al.  Enantiomer-dependent immunological response to chiral nanoparticles , 2022, Nature.

[6]  Zhenguo Chen,et al.  Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain antibody , 2021, Cell.

[7]  Liyuan Liu,et al.  Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2 , 2021, Nature.

[8]  S. Bhatt,et al.  SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion , 2021, Nature.

[9]  Zhuang Liu,et al.  Inhalable nanocatchers for SARS-CoV-2 inhibition , 2021, Proceedings of the National Academy of Sciences.

[10]  Kristen D. Popowski,et al.  Cell-Mimicking Nanodecoys Neutralize SARS-CoV-2 and Mitigate Lung Injury in a Nonhuman Primate Model of COVID-19 , 2021, Nature Nanotechnology.

[11]  R. Mezzenga,et al.  An antiviral trap made of protein nanofibrils and iron oxyhydroxide nanoparticles , 2021, Nature Nanotechnology.

[12]  A. Alivisatos,et al.  The chain of chirality transfer in tellurium nanocrystals , 2021, Science.

[13]  N. Kotov,et al.  Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order , 2021, Science.

[14]  Honglin Chen,et al.  Spherical Neutralizing Aptamer Inhibits SARS-CoV-2 Infection and Suppresses Mutational Escape. , 2021, Journal of the American Chemical Society.

[15]  M. Nussenzweig,et al.  mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants , 2021, Nature.

[16]  G. Randall,et al.  Nanotraps for the containment and clearance of SARS-CoV-2 , 2021, bioRxiv.

[17]  J. Ortega,et al.  SARS‐CoV‐2 RBD Neutralizing Antibody Induction is Enhanced by Particulate Vaccination , 2020, Advanced materials.

[18]  R. Langer,et al.  A materials-science perspective on tackling COVID-19 , 2020, Nature Reviews Materials.

[19]  N. Steinmetz,et al.  COVID-19 Vaccine Frontrunners and Their Nanotechnology Design , 2020, ACS nano.

[20]  N. Krogan,et al.  Bi-paratopic and multivalent VH domains block ACE2 binding and neutralize SARS-CoV-2 , 2020, Nature Chemical Biology.

[21]  G. Ippolito,et al.  Structure-based design of prefusion-stabilized SARS-CoV-2 spikes , 2020, Science.

[22]  Ryan W. Benz,et al.  Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona , 2020, Nature Communications.

[23]  Lisa E. Gralinski,et al.  Potently neutralizing and protective human antibodies against SARS-CoV-2 , 2020, Nature.

[24]  R. Spreafico,et al.  A perspective on potential antibody-dependent enhancement of SARS-CoV-2 , 2020, Nature.

[25]  J. M. Taboada,et al.  Micelle-directed chiral seeded growth on anisotropic gold nanocrystals , 2020, Science.

[26]  William J. Liu,et al.  A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2 , 2020, Nature.

[27]  Linqi Zhang,et al.  Human neutralizing antibodies elicited by SARS-CoV-2 infection , 2020, Nature.

[28]  H. Achdout,et al.  Tiger team: a panel of human neutralizing mAbs targeting SARS-CoV-2 spike at multiple epitopes , 2020, bioRxiv.

[29]  Nicholas A. Kotov,et al.  Emergence of complexity in hierarchically organized chiral particles , 2020, Science.

[30]  Zhigang Wu,et al.  Molecular Architecture of the SARS-CoV-2 Virus , 2020, Cell.

[31]  Linqi Zhang,et al.  Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor , 2020, Nature.

[32]  S. De Carlo,et al.  Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry , 2020, Nature Nanotechnology.

[33]  B. Graham,et al.  Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation , 2020, Science.

[34]  N. Kotov,et al.  Single- and multi-component chiral supraparticles as modular enantioselective catalysts , 2019, Nature Communications.

[35]  S. Glotzer,et al.  Supraparticle Nanoassemblies with Enzymes , 2019, Chemistry of Materials.

[36]  C. Mirkin,et al.  Protein Materials Engineering with DNA. , 2019, Accounts of chemical research.

[37]  Craig S. Kaplan,et al.  An ultra-stable gold-coordinated protein cage displaying reversible assembly , 2019, Nature.

[38]  R. E. Schaak,et al.  Exploiting Crystallographic Regioselectivity To Engineer Asymmetric Three-Component Colloidal Nanoparticle Isomers Using Partial Cation Exchange Reactions. , 2018, Journal of the American Chemical Society.

[39]  P. Král,et al.  Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. , 2018, Nature materials.

[40]  N. Kotov,et al.  Chiromagnetic nanoparticles and gels , 2018, Science.

[41]  Petr Král,et al.  Self-assembly of nanoparticles into biomimetic capsid-like nanoshells. , 2017, Nature chemistry.

[42]  Jinbin Liu,et al.  Luminescent Gold Nanoparticles with Size-Independent Emission. , 2016, Angewandte Chemie.

[43]  Nicholas A Kotov,et al.  Shape-Dependent Biomimetic Inhibition of Enzyme by Nanoparticles and Their Antibacterial Activity. , 2015, ACS nano.

[44]  Shige Wang,et al.  Hollow mesoporous organosilica nanoparticles: a generic intelligent framework-hybridization approach for biomedicine. , 2014, Journal of the American Chemical Society.

[45]  S. Glotzer,et al.  Terminal supraparticle assemblies from similarly charged protein molecules and nanoparticles , 2014, Nature Communications.

[46]  Andrea R Tao,et al.  Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies. , 2014, Nano letters.

[47]  K. Dawson,et al.  Biomolecular Coronas Provide the Biological Identity of Nanomaterials , 2017 .

[48]  F. Huang,et al.  A plasmonic nano-antenna with controllable resonance frequency: Cu1.94S–ZnS dimeric nanoheterostructure synthesized in solution , 2012 .

[49]  C. Flox,et al.  Morphology evolution of Cu(2-x)S nanoparticles: from spheres to dodecahedrons. , 2011, Chemical communications.

[50]  Martin F. Bachmann,et al.  Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns , 2010, Nature Reviews Immunology.

[51]  Kai Sun,et al.  Formation and assembly-disassembly processes of ZnO hexagonal pyramids driven by dipolar and excluded volume interactions. , 2010, Journal of the American Chemical Society.

[52]  Monic Shah,et al.  Biological applications of gold nanoparticles. , 2014, Journal of nanoscience and nanotechnology.

[53]  Mauri A Kostiainen,et al.  Electrostatic assembly of binary nanoparticle superlattices using protein cages. , 2013, Nature nanotechnology.