Worst-case analysis of maximal dual feasible functions
暂无分享,去创建一个
Cláudio Alves | Jürgen Rietz | José M. Valério de Carvalho | J. V. D. Carvalho | Cláudio Alves | J. Rietz
[1] Jacques Carlier,et al. New reduction procedures and lower bounds for the two-dimensional bin packing problem with fixed orientation , 2007, Comput. Oper. Res..
[2] Paolo Toth,et al. Knapsack Problems: Algorithms and Computer Implementations , 1990 .
[3] Sándor P. Fekete,et al. New classes of fast lower bounds for bin packing problems , 2001, Math. Program..
[4] R. Gomory,et al. A Linear Programming Approach to the Cutting-Stock Problem , 1961 .
[5] François Vanderbeck,et al. Exact Algorithm for Minimising the Number of Setups in the One-Dimensional Cutting Stock Problem , 2000, Oper. Res..
[6] Sanjeeb Dash,et al. Valid inequalities based on simple mixed-integer sets , 2006, Math. Program..
[7] Cláudio Alves,et al. A survey of dual-feasible and superadditive functions , 2010, Ann. Oper. Res..
[8] Claude-Alain Burdet,et al. A Subadditive Approach to Solve Linear Integer Programs , 1977 .
[9] Panos M. Pardalos,et al. Encyclopedia of Optimization , 2006 .
[10] Cláudio Alves,et al. Theoretical investigations on maximal dual feasible functions , 2010, Oper. Res. Lett..
[11] David S. Johnson,et al. Near-optimal bin packing algorithms , 1973 .
[12] John E. Mitchell,et al. Integer Programming: Cutting Plane Algorithms , 2009, Encyclopedia of Optimization.
[13] Csaba I. Fábián,et al. Cutting-Stock Problem , 2009, Encyclopedia of Optimization.
[14] Andrea Lodi,et al. Strengthening Chvátal-Gomory cuts and Gomory fractional cuts , 2002, Oper. Res. Lett..
[15] Panos M. Pardalos,et al. Handbook of applied optimization , 2002 .