q-Deformed Fock spaces and modular representations of spin symmetric groups

We use the Fock-space representation of the quantum affine algebra of type to obtain a description of the global crystal basis of its basic level 1 module. We formulate a conjecture relating this basis to decomposition matrices of spin symmetric groups in characteristic 2n+1.

[1]  W. Soergel Charakterformeln für Kipp-Moduln über Kac-Moody-Algebren , 1997 .

[2]  Wolfgang Soergel,et al.  Kazhdan-Lusztig polynomials and a combinatoric for tilting modules , 1997 .

[3]  Alain Lascoux,et al.  Hecke algebras at roots of unity and crystal bases of quantum affine algebras , 1996 .

[4]  T. Miwa,et al.  Perfect crystals andq-deformed Fock spaces , 1996, q-alg/9603025.

[5]  J. Thibon,et al.  Canonical bases of q-deformed Fock spaces , 1996, q-alg/9602025.

[6]  S. Warnaar,et al.  A proof of polynomial identities of type sl(n̂)1⊗sl(n̂)1/sl(n̂)2 , 1996 .

[7]  S. Ariki On the decomposition numbers of the Hecke algebra of $G(m, 1, n)$ , 1996 .

[8]  A. Lascoux,et al.  Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties , 1995, q-alg/9512031.

[9]  Eugene Stern Semi-Infinite Wedges and Vertex Operators , 1995, q-alg/9504013.

[10]  T. Miwa,et al.  Decomposition ofq-deformed Fock spaces , 1995, q-alg/9508006.

[11]  S. Ariki,et al.  Weight vectors of the basic A1(1)-module and the Littlewood-Richardson rule , 1995, q-alg/9502011.

[12]  G. Andrews,et al.  Partition identities and labels for some modular characters , 1994 .

[13]  T. Nakajima,et al.  Basic representations of A2l(2) and Dl+1(2) and the polynomial solutions to the reduced BKP hierarchies , 1994, hep-th/9401077.

[14]  I. Grojnowski Representations of affine Hecke algebras (and affine quantum GL n ) at roots of unity , 1994 .

[15]  P. Jarvis,et al.  Combinatorial description of the Fock representation of the affine lie algebra go(∞) , 1994 .

[16]  T. Miwa,et al.  Perfect crystals of quantum affine Lie algebras , 1992 .

[17]  T. Miwa,et al.  AFFINE CRYSTALS AND VERTEX MODELS , 1992 .

[18]  G. Olshanski Quantized universal enveloping superalgebra of type Q and a super-extension of the Hecke algebra , 1992 .

[19]  Christine Bessenrodt,et al.  A Combinatorial Proof of a Refinement of the Andrews - Olsson Partition Identity , 1991, Eur. J. Comb..

[20]  M. Kashiwara,et al.  On crystal bases of the $Q$-analogue of universal enveloping algebras , 1991 .

[21]  Tetsuji Miwa,et al.  Crystal base for the basic representation of $$U_q (\widehat{\mathfrak{s}\mathfrak{l}}(n))$$ , 1990 .

[22]  Gordon James,et al.  The Decomposition Matrices of GLn(q) for n ≤ 10 , 1990 .

[23]  Takahiro Hayashi,et al.  Q-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras , 1990 .

[24]  H. Morton Braids and Coverings: Threading knot diagrams (by Hugh R. Morton), [Math. Proc. Camb. Phil. Soc. 99(1986), 247–260] , 1989 .

[25]  A. Morris,et al.  Decomposition matrices for spin characters of symmetric groups , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[26]  A. Morris,et al.  Some combinatorial results involving shifted Young diagrams , 1986, Mathematical Proceedings of the Cambridge Philosophical Society.

[27]  Masaki Kashiwara,et al.  Transformation Groups for Soliton Equations —Euclidean Lie Algebras and Reduction of the KP Hierarchy— , 1982 .

[28]  Masaki Kashiwara,et al.  Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type , 1982 .

[29]  V. Kac,et al.  Realization of the basic representations of the Euclidean Lie algebras , 1981 .

[30]  A. Morris The Spin Representation of the Symmetric Group , 1965, Canadian Journal of Mathematics.