Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions

Let $\{ a_{\bf r} : {\bf r} \in {\mathbb N}^d \}$ be a $d$-dimensional array of numbers for which the generating function $F({\bf z}) := \sum_{\bf r} a_{\bf r} {\bf z}^{\bf r}$ is meromorphic in a neighborhood of the origin. For example, $F$ may be a rational multivariate generating function. We discuss recent results that allow the effective computation of asymptotic expansions for the coefficients of $F$. Our purpose is to illustrate the use of these techniques on a variety of problems of combinatorial interest. The survey begins by summarizing previous work on the asymptotics of univariate and multivariate generating functions. Next we describe the Morse-theoretic underpinnings of some new asymptotic techniques. We then quote and summarize these results in such a way that only elementary analyses are needed to check hypotheses and carry out computations. The remainder of the survey focuses on combinatorial applications, such as enumeration of words with forbidden substrings, edges and cycles in graphs, polyominoes, and descents in permutations. After the individual examples, we discuss three broad classes of examples, namely, functions derived via the transfer matrix method, those derived via the kernel method, and those derived via the method of Lagrange inversion. These methods have the property that generating functions derived from them are amenable to our asymptotic analyses, and we describe further machinery that facilitates computations for these classes of examples.

[1]  Michael S. Waterman,et al.  Applications of combinatorics to molecular biology , 1996 .

[2]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration. III. Matrix Recursions , 1983, J. Comb. Theory, Ser. A.

[3]  Manuel E. Lladser,et al.  Asymptotic enumeration via singularity analysis , 2003 .

[4]  David E Speyer,et al.  An arctic circle theorem for Groves , 2005, J. Comb. Theory, Ser. A.

[5]  R. Lyons,et al.  Coalescing Particles on an Interval , 1999 .

[6]  Bruno Buchberger,et al.  Groebner basis , 2010, Scholarpedia.

[7]  R. Durrett Probability: Theory and Examples , 1993 .

[8]  A. Odlyzko Asymptotic enumeration methods , 1996 .

[9]  Emeric Deutsch,et al.  A survey of the Fine numbers , 2001, Discret. Math..

[10]  L. Lipshitz,et al.  The diagonal of a D-finite power series is D-finite , 1988 .

[11]  L. Hörmander,et al.  An introduction to complex analysis in several variables , 1973 .

[12]  Mark C. Wilson,et al.  The diameter of random Cayley digraphs of given degree , 2007, 0706.3539.

[13]  Hsien-Kuei Hwang,et al.  LARGE DEVIATIONS OF COMBINATORIAL DISTRIBUTIONS II. LOCAL LIMIT THEOREMS , 1998 .

[14]  Jean Leray,et al.  Le calcul différentiel et intégral sur une variété analytique complexe. (Problème de Cauchy. III.) , 1959 .

[15]  Ira M. Gessel,et al.  Super Ballot Numbers , 1992, J. Symb. Comput..

[16]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[17]  Rekha R. Thomas,et al.  Algebraic and geometric methods in discrete optimization , 2003, Math. Program..

[18]  Manuel E. Lladser Uniform Formulae for Coefficients of Meromorphic Functions in Two Variables. Part I , 2006, SIAM J. Discret. Math..

[19]  Nicholas C. Wormald,et al.  The Distribution of the Maximum Vertex Degree in Random Planar Maps , 2000, J. Comb. Theory A.

[20]  S. Finch Integer partitions , 2021 .

[21]  Michael Drmota,et al.  A Bivariate Asymptotic Expansion of Coefficients of Powers of Generating Functions , 1994, Eur. J. Comb..

[22]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration , 1973, J. Comb. Theory A.

[23]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration II: Multivariate Generating Functions , 1983, J. Comb. Theory, Ser. A.

[24]  Nicholas C. Wormald,et al.  The Size of the Largest Components in Random Planar Maps , 1999, SIAM J. Discret. Math..

[25]  Yuliy Baryshnikov,et al.  Convolutions of inverse linear functions via multivariate residues , 2004 .

[26]  Jesús A. De Loera,et al.  Algebraic unimodular counting , 2001, Math. Program..

[27]  Ben Lichtin,et al.  The asymptotics of a lattice point problem associated to a finite number of polynomials I , 1991 .

[28]  Renzo Sprugnoli,et al.  Riordan arrays and combinatorial sums , 1994, Discret. Math..

[29]  Robin Pemantle,et al.  Generating functions with high-order poles are nearly polynomial , 2000 .

[30]  J. Propp,et al.  Local statistics for random domino tilings of the Aztec diamond , 1996, math/0008243.

[31]  Jerrold R. Griggs,et al.  On the number of alignments ofk sequences , 1990, Graphs Comb..

[32]  I. Goulden,et al.  Combinatorial Enumeration , 2004 .

[33]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[34]  Ronald L. Graham,et al.  Pebbling a Chessboard , 1995 .

[35]  G. Hardy,et al.  Asymptotic Formulӕ for the Distribution of Integers of Various Types , 1917 .

[36]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[37]  Emanuele Munarini,et al.  Binary strings without zigzags , 2004 .

[38]  W. Hayman A Generalisation of Stirling's Formula. , 1956 .

[39]  Leonidas J. Guibas,et al.  String Overlaps, Pattern Matching, and Nontransitive Games , 1981, J. Comb. Theory A.

[40]  A. Meir,et al.  The Asymptotic Behaviour of Coefficients of Powers of Certain Generating Functions , 1990, Eur. J. Comb..

[41]  N. C. Wormald,et al.  Tournaments with many Hamilton cycles , 2022 .

[42]  Yaakov Kogan Asymptotic expansions for large closed and loss queueing networks , 2002 .

[43]  Hsien-Kuei Hwang,et al.  Large deviations for combinatorial distributions. I. Central limit theorems , 1996 .

[44]  M. Goresky,et al.  Stratified Morse theory , 1988 .

[45]  T. Willmore Algebraic Geometry , 1973, Nature.

[46]  Massimo Santini,et al.  Clique polynomials have a unique root of smallest modulus , 2000, Inf. Process. Lett..

[47]  D. G. Rogers,et al.  Pascal triangles, Catalan numbers and renewal arrays , 1978, Discret. Math..

[48]  Doron Zeilberger,et al.  On Elementary Methods in Positivity Theory , 1983 .

[49]  Danièle Gardy,et al.  Some results on the asymptotic behaviour of coefficients of large powers of functions , 1995, Discret. Math..

[50]  Pierre Cartier,et al.  Problemes combinatoires de commutation et rearrangements , 1969 .

[51]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[52]  Abraham D. Flaxman,et al.  Strings with Maximally Many Distinct Subsequences and Substrings , 2004, Electron. J. Comb..

[53]  L. Aĭzenberg,et al.  Integral Representations and Residues in Multidimensional Complex Analysis , 1983 .

[54]  Edward A. Bender,et al.  Multivariate Asymptotics for Products of Large Powers with Applications to Lagrange Inversion , 1999, Electron. J. Comb..

[55]  George Polya,et al.  On the number of certain lattice polygons , 1969 .

[56]  Mark C. Wilson Asymptotics for Generalized Riordan Arrays , 2005 .

[57]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[58]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[59]  Peter Henrici Special functions, integral transforms, asymptotics, continued fractions , 1977 .

[60]  Philippe Flajolet,et al.  Random maps, coalescing saddles, singularity analysis, and Airy phenomena , 2001, Random Struct. Algorithms.

[61]  Mark C. Wilson,et al.  Asymptotics of Multivariate Sequences II: Multiple Points of the Singular Variety , 2004, Combinatorics, Probability and Computing.

[62]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[63]  J. W. Bruce,et al.  STRATIFIED MORSE THEORY (Ergebnisse der Mathematik und ihrer Grenzgebiete. (3) 14) , 1989 .

[64]  Mark C. Wilson,et al.  Asymptotics of Multivariate Sequences: I. Smooth Points of the Singular Variety , 2002, J. Comb. Theory A.

[65]  Zhicheng Gao,et al.  Central and local limit theorems applied to asymptotic enumeration IV: multivariate generating functions , 1992 .

[66]  N. A. Brigham,et al.  A general asymptotic formula for partition functions , 1950 .

[67]  Jean Mairesse,et al.  Computing the average parallelism in trace monoids , 2001, Discret. Math..

[68]  Andrea L. Bertozzi,et al.  Multidimensional Residues, Generating Functions, and Their Application to Queueing Networks , 1993, SIAM Rev..

[69]  D. Klarner,et al.  The diagonal of a double power series , 1971 .

[70]  Jerrold R. Griggs,et al.  Sequence alignments with matched sections , 1986 .

[71]  Harry Furstenberg,et al.  Algebraic functions over finite fields , 1967 .

[72]  C WilsonMark,et al.  Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions , 2008 .

[73]  E. Bender Asymptotic Methods in Enumeration , 1974 .

[74]  Mireille Bousquet-Mélou,et al.  Linear recurrences with constant coefficients: the multivariate case , 2000, Discret. Math..

[75]  Thomas H. Parker,et al.  What is π , 1991 .