Graphite and Hexagonal Boron-Nitride have the Same Interlayer Distance. Why?

Graphite and hexagonal boron nitride (h-BN) are two prominent members of the family of layered materials possessing a hexagonal lattice structure. While graphite has nonpolar homonuclear C-C intralayer bonds, h-BN presents highly polar B-N bonds resulting in different optimal stacking modes of the two materials in the bulk form. Furthermore, the static polarizabilities of the constituent atoms considerably differ from each other, suggesting large differences in the dispersive component of the interlayer bonding. Despite these major differences, both materials present practically identical interlayer distances. To understand this finding, a comparative study of the nature of the interlayer bonding in both materials is presented. A full lattice sum of the interactions between the partially charged atomic centers in h-BN results in vanishingly small contributions to the interlayer binding energy. Higher order electrostatic multipoles, exchange, and short-range correlation Kohn-Sham contributions are found to be very similar in both materials and to almost completely cancel out by the kinetic energy term, which partly represents the effects of Pauli repulsions, at physically relevant interlayer distances, resulting in a marginal effective contribution to the interlayer binding. Further analysis of the dispersive energy term reveals that despite the large differences in the individual atomic polarizabilities, the heteroatomic B-N C6 coefficient is very similar to the homoatomic C-C coefficient in the hexagonal bulk form, resulting in very similar dispersive contribution to the interlayer binding. The overall binding energy curves of both materials are thus very similar, predicting practically the same interlayer distance and very similar binding energies. The conclusions drawn here regarding the role of electrostatic interactions between partially charged atomic centers for the interlayer binding of h-BN are of a general nature and are expected to hold true for many other polar layered systems.

[1]  K. Morton,et al.  The Electrostatic Energy of Boron Nitride , 1953 .

[2]  Elsebeth Schröder,et al.  Application of van der Waals density functional to an extended system: adsorption of benzene and naphthalene on graphite. , 2006, Physical review letters.

[3]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[4]  H. Tsuboi,et al.  A computational chemistry study on friction of h-MoS₂. Part II. Friction anisotropy. , 2010, The journal of physical chemistry. B.

[5]  P. Hyldgaard,et al.  Hard numbers on soft matter , 2003 .

[6]  C. Coulson,et al.  Studies in Graphite and Related Compounds III: Electronic Band Structure in Boron Nitride , 1952 .

[7]  G. Will,et al.  Isothermal compression of hexagonal graphite-like boron nitride up to 12 GPa , 1995 .

[8]  L. Girifalco,et al.  Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System , 1956 .

[9]  D. E. Parry The electrostatic potential in the surface region of an ionic crystal , 1975 .

[10]  Pablo Jarillo-Herrero,et al.  Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. , 2011, Nature materials.

[11]  J. Lennard-jones,et al.  Cohesion at a crystal surface , 1928 .

[12]  H. Haick,et al.  Electrostatic Properties of Ideal and Non‐ideal Polar Organic Monolayers: Implications for Electronic Devices , 2007 .

[13]  A. Tkatchenko,et al.  Stacking and registry effects in layered materials: the case of hexagonal boron nitride. , 2010, Physical review letters.

[14]  C. Zhi,et al.  Large‐Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties , 2009 .

[15]  J. E. Lowther,et al.  Relative stability of cubic and different hexagonal forms of boron nitride , 2002 .

[16]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[17]  Jian Ping Lu,et al.  Atomic Scale Sliding and Rolling of Carbon Nanotubes , 1999 .

[18]  M. Koyama,et al.  A computational chemistry study on friction of h-MoS(2). Part I. Mechanism of single sheet lubrication. , 2009, The journal of physical chemistry. B.

[19]  G. Scuseria,et al.  Edge effects in finite elongated graphene nanoribbons , 2007, 0709.3134.

[20]  T. Dumitricǎ,et al.  Extended tight-binding potential for modelling intertube interactions in carbon nanotubes , 2007 .

[21]  A. Katzir,et al.  Optical properties of hexagonal boron nitride , 1976 .

[22]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[23]  A. Tkatchenko,et al.  Structure and Formation of Synthetic Hemozoin: Insights From First-Principles Calculations , 2011 .

[24]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[25]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[26]  Wanlin Guo,et al.  "White graphenes": boron nitride nanoribbons via boron nitride nanotube unwrapping. , 2010, Nano letters.

[27]  Zettl,et al.  Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes , 2000, Science.

[28]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Tkatchenko,et al.  Dispersion Interactions with Density-Functional Theory: Benchmarking Semiempirical and Interatomic Pairwise Corrected Density Functionals. , 2011, Journal of chemical theory and computation.

[30]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[31]  Hendrik Ulbricht,et al.  Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons , 2004 .

[32]  Christian Kisielowski,et al.  Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy , 2009 .

[33]  Jun Lou,et al.  Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.

[34]  J. Borwein,et al.  Convergence of Madelung-like lattice sums , 1998 .

[35]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[36]  Angel Rubio,et al.  First-principles description of correlation effects in layered materials. , 2006, Physical review letters.

[37]  Takashi Taniguchi,et al.  Hunting for monolayer boron nitride: optical and Raman signatures. , 2011, Small.

[38]  G. Scuseria,et al.  Half-metallic graphene nanodots: A comprehensive first-principles theoretical study , 2007, 0709.0938.

[39]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[40]  J. Board,et al.  Ewald summation techniques in perspective: a survey , 1996 .

[41]  Steven G. Louie,et al.  MICROSCOPIC DETERMINATION OF THE INTERLAYER BINDING ENERGY IN GRAPHITE , 1998 .

[42]  T. Bolland,et al.  Theoretical elastic behavior for hexagonal boron nitride , 1976 .

[43]  A. H. R. Palser,et al.  Interlayer interactions in graphite and carbon nanotubes , 1999 .

[44]  Alicja Bachmatiuk,et al.  Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. , 2010, ACS nano.

[45]  P. Hyldgaard,et al.  Van der Waals density functional for layered structures. , 2003, Physical review letters.

[46]  黄富强 Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition , 2011 .

[47]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[48]  R. S. Pease An X‐ray study of boron nitride , 1952 .

[49]  Z. Klusek,et al.  Energy gap tuning in graphene on hexagonal boron nitride bilayer system , 2010, 1002.1697.

[50]  A. Dalgarno,et al.  Linear response time-dependent density functional theory for van der Waals coefficients. , 2004, The Journal of chemical physics.

[51]  Jun Lou,et al.  Direct growth of graphene/hexagonal boron nitride stacked layers. , 2011, Nano letters.

[52]  Kenji Watanabe,et al.  Structure of chemically derived mono- and few-atomic-layer boron nitride sheets , 2008 .

[53]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[54]  L. Hector,et al.  Planar stacking effect on elastic stability of hexagonal boron nitride , 2007 .

[55]  W. Steele,et al.  The electrostatic field at a graphite surface and its effect on molecule-solid interactions , 1992 .

[56]  A. Becke Density-functional thermochemistry. , 1996 .

[57]  J. Charlier,et al.  Graphite Interplanar Bonding: Electronic Delocalization and van der Waals Interaction , 1994 .

[58]  D. Chung Review Graphite , 2002 .

[59]  G. Scuseria,et al.  Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional. , 2011, Accounts of chemical research.

[60]  Madelung constants and lattice sums for hexagonal crystals , 1991 .

[61]  Jeroen van den Brink,et al.  Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations , 2007 .

[62]  Miquel Duran,et al.  How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? , 1996 .

[63]  Jannik C. Meyer,et al.  Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. , 2009, Nano letters.

[64]  Freeman,et al.  Bulk and surface electronic structure of hexagonal boron nitride. , 1987, Physical review. B, Condensed matter.

[65]  W. Paszkowicz,et al.  Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10–297.5 K temperature range , 2002 .

[66]  M. Sakata,et al.  CHARGE DENSITY OF HEXAGONAL BORON NITRIDE USING SYNCHROTRON RADIATION POWDER DATA BY MAXIMUM ENTROPY METHOD , 1997 .

[67]  R. M. Ribeiro,et al.  Stability of boron nitride bilayers: Ground state energies, interlayer distances, and tight-binding description , 2011, 1101.3950.

[68]  Jonathan M. Borwein,et al.  Convergence of lattice sums and Madelung’s constant , 1985 .

[69]  Donald G. Truhlar,et al.  Density Functionals with Broad Applicability in Chemistry , 2008 .

[70]  Hongyu Zhang,et al.  Tunable electronic structures of graphene/boron nitride heterobilayers , 2011 .

[71]  C. Jin,et al.  Fabrication of a freestanding boron nitride single layer and its defect assignments. , 2009, Physical review letters.

[72]  J. B. Adams,et al.  Electronic structure and bonding in hexagonal boron nitride , 2006 .

[73]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[74]  V. V. Lopatin,et al.  Nature of the interlayer interaction in hexagonal boron nitride , 1988 .

[75]  J F Dobson,et al.  Cohesive properties and asymptotics of the dispersion interaction in graphite by the random phase approximation. , 2010, Physical review letters.

[76]  Alexandre Tkatchenko,et al.  Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations. , 2010, Physical review letters.

[77]  J. Perram,et al.  Electrostatic lattice sums for semi-infinite lattices , 1979 .

[78]  Friedhelm Bechstedt,et al.  Semiempirical van der Waals correction to the density functional description of solids and molecular structures , 2006 .

[79]  E. G. STEWARD,et al.  Structure of Graphite , 1947, Nature.

[80]  Masayuki Hasegawa,et al.  Semiempirical approach to the energetics of interlayer binding in graphite , 2004 .

[81]  J. Palacios,et al.  Magnetism in graphene nanoislands. , 2007, Physical review letters.

[82]  E. Gullikson,et al.  Angle-resolved soft X-ray emission and absorption spectroscopy of hexagonal boron nitride. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[83]  V. Crespi,et al.  Registry-dependent interlayer potential for graphitic systems , 2005 .

[84]  Mehmet Topsakal,et al.  First-principles study of two- and one-dimensional honeycomb structures of boron nitride , 2008, 0812.4454.

[85]  M. Ezawa Metallic graphene nanodisks: Electronic and magnetic properties , 2007, 0707.0349.

[86]  Marco Cecchini,et al.  Adsorption of Aromatic and Anti-Aromatic Systems on Graphene through π−π Stacking , 2010 .

[87]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[88]  A. Tkatchenko,et al.  Describing Both Dispersion Interactions and Electronic Structure Using Density Functional Theory: The Case of Metal-Phthalocyanine Dimers. , 2010, Journal of chemical theory and computation.

[89]  P. Ajayan,et al.  Energy gaps in zero-dimensional graphene nanoribbons , 2007 .

[90]  Felix Hanke,et al.  Sensitivity analysis and uncertainty calculation for dispersion corrected density functional theory , 2011, J. Comput. Chem..

[91]  P. Ngoepe,et al.  Effects of Local and Gradient-Corrected Density Approximations on the Prediction of the Intralayer Lattice Distance c, in Graphite and LiC6 , 1999 .

[92]  Jing Kong,et al.  Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. , 2010, Nano letters.

[93]  M. Tosi,et al.  Extension of the Madelung Method for the Evaluation of Lattice Sums , 1960 .

[94]  Jannik C. Meyer,et al.  The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes , 2008 .

[95]  Gotthard Seifert,et al.  Vacancy migration in hexagonal boron nitride , 2007 .

[96]  G. Galli,et al.  Nature and strength of interlayer binding in graphite. , 2009, Physical review letters.

[97]  Georg Kresse,et al.  Ab initio calculation of the lattice dynamics and phase diagram of boron nitride , 1999 .

[98]  O. Hod Quantifying the Stacking Registry Matching in Layered Materials , 2010, 1009.5639.

[99]  Lothar Meyer,et al.  Lattice Constants of Graphite at Low Temperatures , 1955 .

[100]  Changgu Lee,et al.  Frictional Characteristics of Atomically Thin Sheets , 2010, Science.

[101]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.