Automatic Target Detection for Sparse Hyperspectral Images

In this work, a novel target detector for hyperspectral imagery is developed. The detector is independent on the unknown covariance matrix, behaves well in large dimensions, distributional free, invariant to atmospheric effects, and does not require a background dictionary to be constructed. Based on a modification of the robust principal component analysis (RPCA), a given hyperspectral image (HSI) is regarded as being made up of the sum of a low-rank background HSI and a sparse target HSI that contains the targets based on a pre-learned target dictionary specified by the user. The sparse component is directly used for the detection, that is, the targets are simply detected at the non-zero entries of the sparse target HSI. Hence, a novel target detector is developed, which is simply a sparse HSI generated automatically from the original HSI, but containing only the targets with the background is suppressed. The detector is evaluated on real experiments, and the results of which demonstrate its effectiveness for hyperspectral target detection especially when the targets are well matched to the surroundings.

[1]  Jocelyn Chanussot,et al.  Image fusion and spectral unmixing of hyperspectral images for spatial improvement of classification maps , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[2]  Stanley Osher,et al.  L1 unmixing and its application to hyperspectral image enhancement , 2009, Defense + Commercial Sensing.

[3]  Bea Thai,et al.  Invariant subpixel material detection in hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[4]  Jon Atli Benediktsson,et al.  Unsupervised classification and spectral unmixing for sub-pixel labelling , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[5]  Trac D. Tran,et al.  Sparse Representation for Target Detection in Hyperspectral Imagery , 2011, IEEE Journal of Selected Topics in Signal Processing.

[6]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[7]  Yuan Yan Tang,et al.  Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images , 2019, IEEE Transactions on Cybernetics.

[8]  Tong Zhang Multi-stage Convex Relaxation for Feature Selection , 2011, 1106.0565.

[9]  Jon Atli Benediktsson,et al.  The Evolution of the Morphological Profile: from Panchromatic to Hyperspectral Images , 2011 .

[10]  Peijun Du,et al.  Foreword to the special issue on hyperspectral remote sensing: Theory, methods, and applications , 2013 .

[11]  Antonio J. Plaza,et al.  Anomaly Detection in Hyperspectral Images Based on Low-Rank and Sparse Representation , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[12]  S. J. Sutley,et al.  Mapping Advanced Argillic Alteration at Cuprite, Nevada, Using Imaging Spectroscopy , 2014 .

[13]  Loong Fah Cheong,et al.  Simultaneous sparsity-based binary hypothesis model for real hyperspectral target detection , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[14]  S. Hook,et al.  The ASTER spectral library version 2.0 , 2009 .

[15]  Jocelyn Chanussot,et al.  Low-Rank Decomposition and Total Variation Regularization of Hyperspectral Video Sequences , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Ahmad W. Bitar,et al.  Sparse and Low-Rank Matrix Decomposition for Automatic Target Detection in Hyperspectral Imagery , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[17]  F. Lehmann,et al.  HyMap hyperspectral remote sensing to detect hydrocarbons , 2001 .

[18]  Naoto Yokoya,et al.  Hyperspectral Super-Resolution of Locally Low Rank Images From Complementary Multisource Data , 2014, IEEE Transactions on Image Processing.

[19]  Jocelyn Chanussot,et al.  Optical Remote Sensing: Advances in Signal Processing and Exploitation Techniques , 2011 .

[20]  Jon Atli Benediktsson,et al.  Spectral Unmixing for the Classification of Hyperspectral Images at a Finer Spatial Resolution , 2011, IEEE Journal of Selected Topics in Signal Processing.

[21]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[22]  D. C. Robertson,et al.  MODTRAN: A Moderate Resolution Model for LOWTRAN , 1987 .

[23]  Dimitris G. Manolakis,et al.  Is there a best hyperspectral detection algorithm? , 2009, Defense + Commercial Sensing.

[24]  E. M. Winter,et al.  Anomaly detection from hyperspectral imagery , 2002, IEEE Signal Process. Mag..

[25]  Rama Chellappa,et al.  Sparsity inspired selection and recognition of iris images , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.

[26]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  D. Manolakis,et al.  Hyperspectral Imaging Remote Sensing: Physics, Sensors, and Algorithms , 2016 .

[29]  A. Berk MODTRAN : A moderate resolution model for LOWTRAN7 , 1989 .

[30]  Adrian Lewis,et al.  The mathematics of eigenvalue optimization , 2003, Math. Program..

[31]  Jon Atli Benediktsson,et al.  Recent Advances in Techniques for Hyperspectral Image Processing , 2009 .

[32]  Joana Frontera-Pons,et al.  Robust ANMF Detection in Noncentered Impulsive Background , 2017, IEEE Signal Processing Letters.

[33]  Olivier Ledoit,et al.  Honey, I Shrunk the Sample Covariance Matrix , 2003 .

[34]  Loong Fah Cheong,et al.  Target and Background Separation in Hyperspectral Imagery for Automatic Target Detection , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[35]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[36]  Eric Truslow,et al.  Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms , 2014, IEEE Signal Processing Magazine.

[37]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[38]  Junfeng Yang,et al.  A Fast Algorithm for Edge-Preserving Variational Multichannel Image Restoration , 2009, SIAM J. Imaging Sci..

[39]  Trac D. Tran,et al.  Simultaneous Joint Sparsity Model for Target Detection in Hyperspectral Imagery , 2011, IEEE Geoscience and Remote Sensing Letters.

[40]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[41]  Konstantinos Kalpakis,et al.  Low-rank decomposition-based anomaly detection , 2013, Defense, Security, and Sensing.

[42]  Paul D. Gader,et al.  A sparsity promoting bilinear unmixing model , 2012, 2012 4th Workshop on Hyperspectral Image and Signal Processing (WHISPERS).

[43]  Jun Qin,et al.  Low-Rank and Sparsity Analysis Applied to Speech Enhancement Via Online Estimated Dictionary , 2016, IEEE Signal Processing Letters.

[44]  R. Clark,et al.  The U. S. Geological Survey, Digital Spectral Library: Version 1 (0.2 to 3.0um) , 1993 .

[45]  Dimitris G. Manolakis,et al.  Comparative analysis of hyperspectral adaptive matched filter detectors , 2000, SPIE Defense + Commercial Sensing.

[46]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[47]  Tim R. McVicar,et al.  Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes , 2003, IEEE Trans. Geosci. Remote. Sens..

[48]  S. J. Sutley,et al.  Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems , 2003 .

[49]  Jocelyn Chanussot,et al.  Detection of Anomalies Produced by Buried Archaeological Structures Using Nonlinear Principal Component Analysis Applied to Airborne Hyperspectral Image , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[50]  Alexander F. H. Goetz,et al.  Effects of spectrometer band pass, sampling, and signal‐to‐noise ratio on spectral identification using the Tetracorder algorithm , 2003 .

[51]  Bo Du,et al.  A Sparse Representation-Based Binary Hypothesis Model for Target Detection in Hyperspectral Images , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Nasser M. Nasrabadi,et al.  Regularized Spectral Matched Filter for Target Recognition in Hyperspectral Imagery , 2008, IEEE Signal Processing Letters.

[53]  Armando Manduca,et al.  Relaxed Conditions for Sparse Signal Recovery With General Concave Priors , 2009, IEEE Transactions on Signal Processing.

[54]  S. Sathiya Keerthi,et al.  A simple and efficient algorithm for gene selection using sparse logistic regression , 2003, Bioinform..

[55]  G. Watson Characterization of the subdifferential of some matrix norms , 1992 .

[56]  Naoto Yokoya,et al.  Nonlinear Unmixing of Hyperspectral Data Using Semi-Nonnegative Matrix Factorization , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[57]  Donald Geman,et al.  Nonlinear image recovery with half-quadratic regularization , 1995, IEEE Trans. Image Process..

[58]  Miguel Angel Veganzones,et al.  Hyperspectral Anomaly Detectors Using Robust Estimators , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[59]  Bo Du,et al.  Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding , 2015, Pattern Recognit..

[60]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[61]  Louis L. Scharf,et al.  The CFAR adaptive subspace detector is a scale-invariant GLRT , 1999, IEEE Trans. Signal Process..

[62]  S. Dutta,et al.  Study of crop growth parameters using Airborne Imaging Spectrometer data , 2001 .

[63]  Daniel P. W. Ellis,et al.  Speech enhancement by sparse, low-rank, and dictionary spectrogram decomposition , 2013, 2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

[64]  S. Foucart,et al.  Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0 , 2009 .

[65]  J. Chanussot,et al.  Hyperspectral Remote Sensing Data Analysis and Future Challenges , 2013, IEEE Geoscience and Remote Sensing Magazine.

[66]  Loong Fah Cheong,et al.  Sparsity-Based cholesky factorization and its application to hyperspectral anomaly detection , 2017, 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[67]  Gary A. Shaw,et al.  Hyperspectral Image Processing for Automatic Target Detection Applications , 2003 .

[68]  Bo Du,et al.  A Low-Rank and Sparse Matrix Decomposition-Based Mahalanobis Distance Method for Hyperspectral Anomaly Detection , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[69]  Jieping Ye,et al.  Sparse methods for biomedical data , 2012, SKDD.

[70]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[71]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[72]  E. J. Kelly An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[73]  Xiaodong Li,et al.  Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[74]  Jocelyn Chanussot,et al.  Robust anomaly detection in Hyperspectral Imaging , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[75]  E. Candès,et al.  Exact low-rank matrix completion via convex optimization , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[76]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[77]  J. Pons Robust target detection for Hyperspectral Imaging. , 2014 .

[78]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[79]  G. Shaw,et al.  Signal processing for hyperspectral image exploitation , 2002, IEEE Signal Process. Mag..

[80]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[81]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[82]  Ronen Basri,et al.  Lambertian reflectance and linear subspaces , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[83]  Yacine Chitour,et al.  Shrinkage covariance matrix estimator applied to STAP detection , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[84]  Glenn Healey,et al.  Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions , 1999, IEEE Trans. Geosci. Remote. Sens..

[85]  Yacine Chitour,et al.  Generalized Robust Shrinkage Estimator and Its Application to STAP Detection Problem , 2013, IEEE Transactions on Signal Processing.

[86]  Alfred O. Hero,et al.  Robust Shrinkage Estimation of High-Dimensional Covariance Matrices , 2010, IEEE Transactions on Signal Processing.

[87]  Tong Zhang,et al.  Analysis of Multi-stage Convex Relaxation for Sparse Regularization , 2010, J. Mach. Learn. Res..

[88]  Jocelyn Chanussot,et al.  Joint Reconstruction and Anomaly Detection From Compressive Hyperspectral Images Using Mahalanobis Distance-Regularized Tensor RPCA , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[89]  Nasser M. Nasrabadi,et al.  Automated Hyperspectral Cueing for Civilian Search and Rescue , 2009, Proceedings of the IEEE.

[90]  Joana Frontera-Pons,et al.  Adaptive Nonzero-Mean Gaussian Detection , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[91]  Jieping Ye,et al.  Multi-stage multi-task feature learning , 2012, J. Mach. Learn. Res..

[92]  Jocelyn Chanussot,et al.  Optical Remote Sensing , 2011 .

[93]  Fang-Xiang Wu,et al.  Sparse Representation for Classification of Tumors Using Gene Expression Data , 2009, Journal of biomedicine & biotechnology.