A methodology for memristance calculation

A memristor is a newly found fundamental circuit element whose behavior can be predicted using either the charge-dependent function called memristance or the flux-dependent function called memductance. Therefore, it is important to find the memristance or memductance function of a memristor. To the best of our knowledge, there is no methodology describing how to obtain the memristance function or memristor characteristic in the literature for this purpose as of yet. In this work, a methodology is suggested to find the memristance or memductance functions. The methodology suggests first doing several experiments with a memristor using a square-wave signal to acquire data and then using an algorithm inspired by the experience on ionic memristors reported in the literature to obtain its memristance and memductance functions. The methodology is applied to calculate the memristance function and memristor characteristic of a memristor emulator. Justifications for this method are also given.

[1]  Massimiliano Di Ventra,et al.  Memristive circuits simulate memcapacitors and meminductors , 2009, 0910.1583.

[2]  Y. V. Pershin,et al.  Memory Circuit Elements: From Systems to Applications , 2010, 1006.3598.

[3]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[4]  Massimiliano Di Ventra,et al.  Experimental demonstration of associative memory with memristive neural networks , 2009, Neural Networks.

[5]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[6]  L. Chua Memristor-The missing circuit element , 1971 .

[7]  Hsien-Hsin S. Lee,et al.  Architectural evaluation of 3D stacked RRAM caches , 2009, 2009 IEEE International Conference on 3D System Integration.

[8]  Resat Mutlu,et al.  Emulator circuit of Ti02 memristor with linear dopant drift made using analog multiplier , 2010, National Conference on Electrical, Electronics and Computer Engineering.

[9]  Sung-Mo Kang,et al.  Compact Models for Memristors Based on Charge-Flux Constitutive Relationships , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[10]  Massimiliano Di Ventra,et al.  Memristive model of amoeba learning. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Kyungmin Kim,et al.  Memristor Applications for Programmable Analog ICs , 2011, IEEE Transactions on Nanotechnology.

[12]  K. Eshraghian,et al.  The fourth element: characteristics, modelling and electromagnetic theory of the memristor , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Y. Lam,et al.  Formulation of normal form equations of nonlinear networks containing memristors and coupled elements , 1972 .

[14]  Cong Xu,et al.  Impact of process variations on emerging memristor , 2010, Design Automation Conference.

[15]  Kyoung-Rok Cho,et al.  Memristor MOS Content Addressable Memory (MCAM): Hybrid Architecture for Future High Performance Search Engines , 2010, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[16]  R. Williams,et al.  How We Found The Missing Memristor , 2008, IEEE Spectrum.

[17]  Peng Li,et al.  Nonvolatile memristor memory: Device characteristics and design implications , 2009, 2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers.

[18]  David M. Auslander,et al.  The Memristor: A New Bond Graph Element , 1972 .

[19]  F. Gomez-Marlasca,et al.  Hysteresis Switching Loops in Ag-manganite memristive interfaces , 2010, 1002.3593.

[20]  Dalibor Biolek,et al.  SPICE modeling of memristive, memcapacitative and meminductive systems , 2009, 2009 European Conference on Circuit Theory and Design.

[21]  George Oster,et al.  A note on memristors , 1974 .

[22]  Leon O. Chua,et al.  A memristive circuit model for p‐n junction diodes , 1974 .

[23]  Dalibor Biolek,et al.  SPICE Model of Memristor with Nonlinear Dopant Drift , 2009 .

[24]  Massimiliano Di Ventra,et al.  Memristive model of amoeba’s learning , 2008 .

[25]  Yike Guo,et al.  Delayed Switching in Memristors and Memristive Systems , 2010, IEEE Electron Device Letters.

[26]  Massimiliano Di Ventra,et al.  Practical Approach to Programmable Analog Circuits With Memristors , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[27]  Y. Pershin,et al.  Spin Memristive Systems: Spin Memory Effects in Semiconductor Spintronics , 2008, 0806.2151.

[28]  T. A. Wey,et al.  Amplitude modulator circuit featuring TiO2 memristor with linear dopant drift , 2009 .

[29]  Bharathwaj Muthuswamy,et al.  Implementing Memristor Based Chaotic Circuits , 2010, Int. J. Bifurc. Chaos.

[30]  Massimiliano Di Ventra,et al.  Phase-transition driven memristive system , 2009, 0901.0899.

[31]  P. Krzysteczko,et al.  Memristive switching of MgO based magnetic tunnel junctions , 2009, 0907.3684.