A comprehensive survey of entity alignment for knowledge graphs

[1]  Guillaume Bouchard,et al.  Complex Embeddings for Simple Link Prediction , 2016, ICML.

[2]  Rui Zhang,et al.  Entity Alignment between Knowledge Graphs Using Attribute Embeddings , 2019, AAAI.

[3]  Jiuyang Tang,et al.  An Experimental Study of State-of-the-Art Entity Alignment Approaches , 2020, IEEE Transactions on Knowledge and Data Engineering.

[4]  Wei Hu,et al.  Knowledge Graph Alignment Network with Gated Multi-hop Neighborhood Aggregation , 2019, AAAI.

[5]  Bo Chen,et al.  BERT-INT: A BERT-based Interaction Model For Knowledge Graph Alignment , 2020, IJCAI.

[6]  Jianfeng Gao,et al.  Embedding Entities and Relations for Learning and Inference in Knowledge Bases , 2014, ICLR.

[7]  A. Tordai,et al.  Modeling Relational Data with Graph Convolutional Networks , 2017 .

[8]  Yuzhong Qu,et al.  A self-training approach for resolving object coreference on the semantic web , 2011, WWW.

[9]  Jiaoyan Chen,et al.  An Industry Evaluation of Embedding-based Entity Alignment , 2020, COLING.

[10]  Jennifer Widom,et al.  SimRank: a measure of structural-context similarity , 2002, KDD.

[11]  Xiang Zhao,et al.  Degree-Aware Alignment for Entities in Tail , 2020, SIGIR.

[12]  Wenting Wang,et al.  Relational Reflection Entity Alignment , 2020, CIKM.

[13]  Xianpei Han,et al.  Deep Sequence-to-Sequence Entity Matching for Heterogeneous Entity Resolution , 2019, CIKM.

[14]  Yansong Feng,et al.  Neighborhood Matching Network for Entity Alignment , 2020, ACL.

[15]  Yuzhong Qu,et al.  Multi-view Knowledge Graph Embedding for Entity Alignment , 2019, IJCAI.

[16]  Jun Zhao,et al.  Knowledge Graph Embedding via Dynamic Mapping Matrix , 2015, ACL.

[17]  Yuting Wu,et al.  Relation-Aware Entity Alignment for Heterogeneous Knowledge Graphs , 2019, IJCAI.

[18]  Juan-Zi Li,et al.  Boosting Cross-Lingual Knowledge Linking via Concept Annotation , 2013, IJCAI.

[19]  Chengjiang Li,et al.  Semi-supervised Entity Alignment via Joint Knowledge Embedding Model and Cross-graph Model , 2019, EMNLP.

[20]  Serge Abiteboul,et al.  PARIS: Probabilistic Alignment of Relations, Instances, and Schema , 2011, Proc. VLDB Endow..

[21]  Juan-Zi Li,et al.  Text-Enhanced Representation Learning for Knowledge Graph , 2016, IJCAI.

[22]  Xiangliang Zhang,et al.  REA: Robust Cross-lingual Entity Alignment Between Knowledge Graphs , 2020, KDD.

[23]  Yi Li,et al.  RiMOM: A Dynamic Multistrategy Ontology Alignment Framework , 2009, IEEE Transactions on Knowledge and Data Engineering.

[24]  Jie Wang,et al.  Learning Hierarchy-Aware Knowledge Graph Embeddings for Link Prediction , 2020, AAAI.

[25]  Wei Hu,et al.  Cross-Lingual Entity Alignment via Joint Attribute-Preserving Embedding , 2017, SEMWEB.

[26]  Yansong Feng,et al.  Cross-lingual Knowledge Graph Alignment via Graph Matching Neural Network , 2019, ACL.

[27]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[28]  Wei Hu,et al.  Learning to Exploit Long-term Relational Dependencies in Knowledge Graphs , 2019, ICML.

[29]  Wenting Wang,et al.  MRAEA: An Efficient and Robust Entity Alignment Approach for Cross-lingual Knowledge Graph , 2020, WSDM.

[30]  Xin Li,et al.  Non-translational Alignment for Multi-relational Networks , 2018, IJCAI.

[31]  Peter Clark,et al.  Learning Knowledge Graphs for Question Answering through Conversational Dialog , 2015, NAACL.

[32]  Zhen Wang,et al.  Knowledge Graph Embedding by Translating on Hyperplanes , 2014, AAAI.

[33]  Xianpei Han,et al.  Global Structure and Local Semantics-Preserved Embeddings for Entity Alignment , 2020, IJCAI.

[34]  Li Guo,et al.  Knowledge Graph Embedding with Iterative Guidance from Soft Rules , 2017, AAAI.

[35]  Jure Leskovec,et al.  Inductive Representation Learning on Large Graphs , 2017, NIPS.

[36]  Hans-Peter Kriegel,et al.  A Three-Way Model for Collective Learning on Multi-Relational Data , 2011, ICML.

[37]  Xiangliang Zhang,et al.  Improving Cross-lingual Entity Alignment via Optimal Transport , 2019, IJCAI.

[38]  Jan Eric Lenssen,et al.  Fast Graph Representation Learning with PyTorch Geometric , 2019, ArXiv.

[39]  Zhichun Wang,et al.  Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks , 2018, EMNLP.

[40]  Fabian M. Suchanek,et al.  YAGO3: A Knowledge Base from Multilingual Wikipedias , 2015, CIDR.

[41]  Chengkai Li,et al.  A benchmarking study of embedding-based entity alignment for knowledge graphs , 2020, Proc. VLDB Endow..

[42]  Manohar Kaul,et al.  Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs , 2019, ACL.

[43]  Steven Skiena,et al.  Co-training Embeddings of Knowledge Graphs and Entity Descriptions for Cross-lingual Entity Alignment , 2018, IJCAI.

[44]  Wei Hu,et al.  Bootstrapping Entity Alignment with Knowledge Graph Embedding , 2018, IJCAI.

[45]  H. Whitney Congruent Graphs and the Connectivity of Graphs , 1932 .

[46]  Dai Quoc Nguyen,et al.  A Capsule Network-based Embedding Model for Knowledge Graph Completion and Search Personalization , 2018, NAACL.

[47]  Yann LeCun,et al.  Signature Verification Using A "Siamese" Time Delay Neural Network , 1993, Int. J. Pattern Recognit. Artif. Intell..

[48]  Xianpei Han,et al.  End-to-End Multi-Perspective Matching for Entity Resolution , 2019, IJCAI.

[49]  Fabian M. Suchanek,et al.  Fast rule mining in ontological knowledge bases with AMIE+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{docu , 2015, The VLDB Journal.

[50]  Maosong Sun,et al.  XQA: A Cross-lingual Open-domain Question Answering Dataset , 2019, ACL.

[51]  Zhiyuan Liu,et al.  Representation Learning of Knowledge Graphs with Entity Descriptions , 2016, AAAI.

[52]  Zhiyuan Liu,et al.  Iterative Entity Alignment via Joint Knowledge Embeddings , 2017, IJCAI.

[53]  Wei Zhang,et al.  Knowledge Association with Hyperbolic Knowledge Graph Embeddings , 2020, EMNLP.

[54]  Wei Hu,et al.  TransEdge: Translating Relation-Contextualized Embeddings for Knowledge Graphs , 2019, SEMWEB.

[55]  Yoshua Bengio,et al.  Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling , 2014, ArXiv.

[56]  Jimmy J. Lin,et al.  Aligning Cross-Lingual Entities with Multi-Aspect Information , 2019, EMNLP.

[57]  Juan-Zi Li,et al.  RiMOM-IM: A Novel Iterative Framework for Instance Matching , 2016, Journal of Computer Science and Technology.

[58]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[59]  Jason Weston,et al.  Translating Embeddings for Modeling Multi-relational Data , 2013, NIPS.

[60]  Rui Ye,et al.  A Vectorized Relational Graph Convolutional Network for Multi-Relational Network Alignment , 2019, IJCAI.

[61]  Jens Lehmann,et al.  DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia , 2015, Semantic Web.

[62]  Xiaofei Zhou,et al.  Neighborhood-Aware Attentional Representation for Multilingual Knowledge Graphs , 2019, IJCAI.

[63]  Lu Yu,et al.  Semi-Supervised Entity Alignment via Knowledge Graph Embedding with Awareness of Degree Difference , 2019, WWW.

[64]  Yasha Wang,et al.  COTSAE: CO-Training of Structure and Attribute Embeddings for Entity Alignment , 2020, AAAI.

[65]  Wei Shen,et al.  Linking named entities in Tweets with knowledge base via user interest modeling , 2013, KDD.

[66]  Jiuyang Tang,et al.  Collective Entity Alignment via Adaptive Features , 2020, 2020 IEEE 36th International Conference on Data Engineering (ICDE).

[67]  Erhard Rahm,et al.  Similarity flooding: a versatile graph matching algorithm and its application to schema matching , 2002, Proceedings 18th International Conference on Data Engineering.

[68]  Dai Quoc Nguyen,et al.  A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network , 2017, NAACL.

[69]  Joan Bruna,et al.  Spectral Networks and Locally Connected Networks on Graphs , 2013, ICLR.

[70]  Dongyan Zhao,et al.  Jointly Learning Entity and Relation Representations for Entity Alignment , 2019, EMNLP.

[71]  Catherine Havasi,et al.  ConceptNet 5.5: An Open Multilingual Graph of General Knowledge , 2016, AAAI.

[72]  Chengjiang Li,et al.  Multi-Channel Graph Neural Network for Entity Alignment , 2019, ACL.

[73]  Timothy M. Hospedales,et al.  TuckER: Tensor Factorization for Knowledge Graph Completion , 2019, EMNLP.

[74]  Bin Wang,et al.  Guiding Cross-lingual Entity Alignment via Adversarial Knowledge Embedding , 2019, 2019 IEEE International Conference on Data Mining (ICDM).

[75]  Zhichun Wang,et al.  Knowledge Graph Alignment with Entity-Pair Embedding , 2020, EMNLP.

[76]  Zhiyuan Liu,et al.  Neural Knowledge Acquisition via Mutual Attention Between Knowledge Graph and Text , 2018, AAAI.

[77]  Yanghua Xiao,et al.  Modeling Multi-mapping Relations for Precise Cross-lingual Entity Alignment , 2019, EMNLP.

[78]  Gerhard Weikum,et al.  YAGO 4: A Reason-able Knowledge Base , 2020, ESWC.

[79]  Huanbo Luan,et al.  Modeling Relation Paths for Representation Learning of Knowledge Bases , 2015, EMNLP.

[80]  Christos Faloutsos,et al.  Collective Multi-type Entity Alignment Between Knowledge Graphs , 2020, WWW.

[81]  Bernardo Cuenca Grau,et al.  LogMap: Logic-Based and Scalable Ontology Matching , 2011, SEMWEB.

[82]  Chengjiang Li,et al.  XLORE2: Large-scale Cross-lingual Knowledge Graph Construction and Application , 2019, Data Intelligence.

[83]  Paolo Papotti,et al.  Buckle: Evaluating Fact Checking Algorithms Built on Knowledge Bases , 2019, Proc. VLDB Endow..