A group additivity approach for the prediction of wavelength-dependent absorption cross-sections

[1]  V. Majer,et al.  Group contribution method for Henry's Law constant of aqueous hydrocarbons , 2002 .

[2]  R. Bader,et al.  Properties of atoms in molecules: Construction of one-density matrix from functional group densities , 2001 .

[3]  J. Gottifredi,et al.  Estimation of solvent activities in polymers solutions using a group-contribution method , 2001 .

[4]  R. Kumar,et al.  Calculation of Heats of Vaporization of Long Chain Molecules by Group Contribution Method , 2001 .

[5]  Lei Zhu,et al.  Wavelength-Dependent Photolysis of Methylglyoxal in the 290−440 nm Region , 2000 .

[6]  A. Wiegand,et al.  Review of empirical methods for the calculation of the diurnal NO2 photolysis rate coefficient , 2000 .

[7]  James N. Pitts,et al.  Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications , 1999 .

[8]  Lei Zhu,et al.  Wavelength-Dependent Photolysis of i-Pentanal and t-Pentanal from 280 to 330 nm , 1999 .

[9]  G. Moortgat,et al.  Absorption cross-sections of HOCH2OOH vapor between 205 and 360 nm at 298 K , 1999 .

[10]  R. A. Cox,et al.  Evaluated Kinetic, Photochemical and Heterogeneous Data for Atmospheric Chemistry: Supplement V. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry , 1997 .

[11]  K. Clemitshaw,et al.  Gas-phase ultraviolet absorption cross-sections and atmospheric lifetimes of several C2C5 alkyl nitrates , 1997 .

[12]  M. Jenkin,et al.  The tropospheric degradation of volatile organic compounds: a protocol for mechanism development , 1997 .

[13]  J. Weers,et al.  Group Contribution‐Additivity and Quantum Mechanical Models for Predicting the Molar Refractions, Indices of Refraction, and Boiling Points of Fluorochemicals. , 1996 .

[14]  Thao D. Le,et al.  Group contribution-additivity and quantum mechanical models for predicting the molar refractions, indexes of refraction, and boiling points of fluorochemicals , 1995 .

[15]  R. Bader,et al.  Properties of atoms in molecules : magnetic susceptibilities , 1993 .

[16]  Warren E. Stewart,et al.  Parameter estimation from multiresponse data , 1992 .

[17]  J. Joens,et al.  The near U.V. absorption spectra of several aliphatic aldehydes and ketones at 300 K , 1992 .

[18]  M. Mavrovouniotis Group contributions for estimating standard gibbs energies of formation of biochemical compounds in aqueous solution , 1990, Biotechnology and bioengineering.

[19]  J. Roberts,et al.  UV absorption cross sections of organic nitrates of potential atmospheric importance and estimation of atmospheric lifetimes , 1989 .

[20]  Roger Atkinson,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III - gas phase reactions of inorganic halogens , 2006 .

[21]  Ghanshyam L. Vaghjiani,et al.  Absorption cross sections of CH3OOH, H2O2, and D2O2 vapors between 210 and 365 nm at 297 K , 1989 .

[22]  M. Molina,et al.  Chemical kinetics and photochemical data for use in stratospheric modeling , 1985 .

[23]  W. Carter,et al.  Hydroxyl radical rate constants and photolysis rates of .alpha.-dicarbonyls. , 1983, Environmental science & technology.

[24]  R. A. Cox,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III - gas phase reactions of inorganic halogens , 2006 .

[25]  S. Benson,et al.  Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters , 1976 .

[26]  W. Horspool Aspects of organic photochemistry , 1976 .

[27]  Peter Politzer,et al.  Properties of atoms in molecules , 1971 .