Estimation of the deflagration index KSt for dust explosions: A review

Abstract Combustible dust explosions are among the most serious criticalities affecting a broad number of industries around the world. According to a Chemical Safety and Hazard Investigation Board report, more than 50 accidents have occurred only in the U.S. between 2008 and 2012; this datum shows that such a problem requires a relevant attention from both researchers and authorities. The aim of this review is to provide an overview of the currently available techniques able to estimate the severity of a combustible dust explosion. Moreover, the main criticalities arising from these methodologies are discussed, also providing some suggestions for future works.

[1]  A. Laurent,et al.  Experimental Study and Modelling of the Pyrolysis of Organic Dusts: Application to Dust Explosions , 2013 .

[2]  Wolfgang Leuckel,et al.  Determination of Dust-Dispersion-lnduced Turbulence and its Influence on Dust Explosions , 1996 .

[3]  Rs Cant,et al.  On the Decay of Turbulence in the 20-Liter Explosion Sphere , 2001 .

[4]  R. S. Conti,et al.  Domains of flammability and thermal ignitability for pulverized coals and other dusts: Particle size dependences and microscopic residue analyses , 1982 .

[5]  O. Dufaud,et al.  Influence of the size distribution and concentration on wood dust explosion: Experiments and reaction modelling , 2005 .

[6]  Shantanu Roy,et al.  CFD modelling of dust explosions: Rapid combustion in a 20 L apparatus , 2011 .

[7]  Wolfgang Bartknecht,et al.  Explosionen : Ablauf und Schutzmassnahmen , 1978 .

[8]  Pocheau Scale invariance in turbulent front propagation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  W. Bartknecht,et al.  Dust Explosions: Course, Prevention, Protection , 1989 .

[10]  W. Brötz W. Bartknecht: Explosionen, Ablauf und Schutzmaßnahmen. Springer-Verlag, Berlin, Heidelberg, New York 1978. 264 Seiten, Preis: DM 148,— , 1980 .

[11]  Wolfgang Peukert,et al.  Entwicklungstendenzen in der Feststoff‐verfahrenstechnik , 1996 .

[12]  K. J. Mintz Problems in experimental measurements of dust explosions , 1995 .

[13]  RS Cant,et al.  On the transient flow in the 20-liter explosion sphere , 2001 .

[14]  J. Merklin,et al.  Rapid pyrolysis of cellulose with reactive hydrogen gas in a single-pulse shock tube , 1995 .

[15]  Ömer L. Gülder,et al.  Turbulent premixed flame propagation models for different combustion regimes , 1990 .

[16]  José A. Caballero,et al.  Comparison between the pyrolysis products obtained from different organic wastes at high temperatures , 1995 .

[17]  Bjørn Johan Arntzen,et al.  Modelling of turbulence and combustion for simulation of gas explosions in complex geometries , 1998 .

[18]  Tasneem Abbasi,et al.  Dust explosions-cases, causes, consequences, and control. , 2007, Journal of hazardous materials.

[19]  Shantanu Roy,et al.  A reaction engineering approach to modeling dust explosions , 2012 .

[20]  Toshisuke Hirano,et al.  Structure of flames propagating through aluminum particles cloud and combustion process of particles , 2006 .

[21]  Calvin B. Parnell,et al.  A critical evaluation of combustible/explosible dust testing methods – Part 1 , 2013 .

[22]  Sandia Report The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry , 2013 .

[23]  I. G. Shepherd,et al.  Lewis number effects on turbulent premixed flame structure , 1993 .

[24]  Trygve Skjold,et al.  Review of the DESC project , 2007 .

[25]  Laurent Perrin,et al.  Comparing Pyrolysis Gases and Dusts Explosivities: A Clue to Understanding Hybrid Mixtures Explosions? , 2012 .

[26]  K. Bray,et al.  Studies of the turbulent burning velocity , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[27]  N.H.A. Versloot,et al.  A quantitative risk assessment tool for the external safety of industrial plants with a dust explosion hazard , 2007 .

[28]  Maurice A. Bergougnou,et al.  The kinetics of vapour-phase cellulose fast pyrolysis reactions , 1994 .

[29]  Colomba Di Blasi,et al.  Transition between regimes in the degradation of thermoplastic polymers , 1999 .

[30]  C. Proust A few fundamental aspects about ignition and flame propagation in dust clouds , 2006 .

[31]  José M. Encinar,et al.  Pyrolysis of maize, sunflower, grape and tobacco residues , 1997 .

[32]  Weixing Huang,et al.  Comparative study of explosion processes controlled by homogeneous and heterogeneous combustion mechanisms , 2014 .

[33]  W. Leuckel,et al.  Effects of ignitors and turbulence on dust explosions , 1997 .

[34]  E. Coker,et al.  The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry. , 2013 .

[35]  Laurent Perrin,et al.  Experimental investigation and modelling of aluminum dusts explosions in the 20 L sphere , 2010 .

[36]  Laurent Dupont,et al.  Measuring the violence of dust explosions with the “20 l sphere” and with the standard “ISO 1 m3 vessel”: Systematic comparison and analysis of the discrepancies , 2007 .

[37]  Rolf K. Eckhoff,et al.  Simulating Dust Explosions with the First Version of DESC , 2005 .

[38]  Paola Russo,et al.  Modelling of the effect of size on flocculent dust explosions , 2013 .

[39]  Edward P. Vicenzi,et al.  Condensed-phase modifications in magnesium particle combustion in air , 2000 .

[40]  P. V. D. Wel,et al.  Ignition and propagation of dust explosions , 1993 .

[41]  John Nagy,et al.  Development and control of dust explosions , 1983 .

[42]  Paola Russo,et al.  Thermo-kinetic modelling of dust explosions , 2007 .

[43]  Cambray Pierre,et al.  Length-Scales of Wrinkling of Weakly-Forced, Unstable Premixed Flames , 1994 .

[44]  Tatsuo Tanaka,et al.  Prediction of Maximum Rate of Pressure Rise Due to Dust Explosion in Closed Spherical and Nonspherical Vessels , 1980 .

[45]  J. Jarosiński,et al.  The investigation of the feature of dispersion induced turbulence and its effects on dust explosions in closed vessels , 1989 .

[46]  J. C. Slattery,et al.  Momentum, Energy and Mass Transfer in Continua , 1976 .

[47]  K. Hanjalic,et al.  Determination of the laminar burning velocity and the Markstein length of powder–air flames , 2002 .

[48]  P. García,et al.  Pyrolysis of high-density polyethylene in a fluidised bed reactor. Influence of the temperature and residence time , 2002 .

[49]  K. Cashdollar,et al.  Flammability limit measurements for dusts in 20-L and 1-m3 vessels , 2000 .

[50]  E. Dreizin,et al.  Effect of Phase Changes on Metal‐Particle Combustion Processes , 2003 .

[51]  A. Dahoe Dust Explosions: A Study of Flame Propagation , 2000 .

[52]  Rolf K. Eckhoff,et al.  Dust Explosions in the Process Industries , 1991 .

[53]  Iskender Gökalp,et al.  Experimental studies on the burning of coated and uncoated micro and nano-sized aluminium particles , 2007 .

[54]  Paola Russo,et al.  Model for the evaluation of thermo-kinetic parameters of dust explosions , 2007 .

[55]  Ali S. Rangwala,et al.  Modeling of dust air flames , 2013 .

[56]  Paola Russo,et al.  Modelling the effect of particle size on dust explosions , 2010 .

[57]  S. Lemkowitz,et al.  Dust explosions in spherical vessels: The role of flame thickness in the validity of the ‘cube-root law’ , 1996 .

[58]  Paola Russo,et al.  Theoretical evaluation of the explosion regimes of hybrid mixtures , 2012 .

[59]  Weixing Huang,et al.  Experiment-based investigations on the effect of ignition energy on dust explosion behaviors , 2013 .

[60]  Gregory I. Sivashinsky,et al.  Cascade-renormalization theory of turbulent flame speed , 1988 .

[61]  M. Hertzberg,et al.  Devolatilization rates and intraparticle wave structures during the combustion of pulverized coals and polymethylmethacrylate , 1991 .

[62]  C. W. Kauffman,et al.  Turbulence effects on dust explosions in the 20-liter spherical vessel , 1991 .