Supermassive Black Hole Winds in X-rays: SUBWAYS. I. Ultra-fast outflows in QSOs beyond the local Universe

We present a new X-ray spectroscopic study of $22$ luminous ($2\times10^{45}\lesssim L_{\rm bol}\rm /erg\,s^{-1} \lesssim 2\times10^{46}$) active galactic nuclei (AGNs) at intermediate-redshift ($0.1 \lesssim z \lesssim 0.4$), as part of the SUpermassive Black hole Winds in the x-rAYS (SUBWAYS) sample, mostly composed of quasars (QSOs) and type\,1 AGN. Here, 17 targets were observed with \textit{XMM-Newton} between 2019--2020 and the remaining 5 are from previous observations. The aim of this large campaign ($1.45\,\rm Ms$ duration) is to characterise the various manifestations of winds in the X-rays driven from supermassive black holes in AGN. In this paper we focus on the search and characterization of ultra-fast outflows (UFOs), which are typically detected through blueshifted absorption troughs in the Fe\,K band ($E>7\,\rm keV$). By following Monte Carlo procedures, we confirm the detection of absorption lines corresponding to highly ionised iron (e.g., Fe\,\textsc{xxv}\,H$\alpha$, Fe\,\textsc{xxvi}\,Ly$\alpha$) in 7/22 sources at the $\gtrsim95\%$ confidence level (for each individual line). The global combined probability of such absorption features in the sample is $>99.9\%$. The SUBWAYS campaign extends at higher luminosity and redshifts than previous local studies on Seyferts, obtained using \xmm and \suzaku observations. We find a UFO detection fraction of $\sim30\%$ on the total sample that is in agreement with the previous findings. This work independently provides further support for the existence of highly-ionised matter propagating at mildly relativistic speed ($\gtrsim0.1c$) in a considerable fraction of AGN over a broad range of luminosities, which is expected to play a key role in the self-regulated AGN feeding-feedback cycle, as also supported by hydrodynamical multiphase simulations.