Comparing reduced partial charge models with polarizable simulations of ionic liquids.

Molecular ionic liquids are typically characterized by strong electrostatic interactions resulting in a charge ordering and retardation of their translational and rotational behaviour. Unfortunately, this effect is often overestimated in classical molecular dynamics simulations. This can be circumvented in a twofold way: the easiest way is to reduce the partial charges of the ions to sub-integer values of ±0.7-0.9 e. The more realistic model is to include polarizable forces, e.g. Drude-oscillators, but it comes along with an increasing computational effort. On the other hand, charge-scaled models are claimed to take an average polarizability into account. But do both models have the same impact on structure and dynamics of molecular ionic liquids? In the present study several molecular dynamics simulations of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate are performed with different levels of polarization as well as with varying charge scaling factors of 0.74 to 0.90. The analysis of the structural and dynamical results are performed in different levels: from the atomic point of view over the molecular level to collective properties determined by the complete sample.

[1]  A. Soper,et al.  Structure of molten 1,3-dimethylimidazolium chloride using neutron diffraction , 2003 .

[2]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[3]  Craig Knox,et al.  On the structure of ionic liquids: comparisons between electronically polarizable and nonpolarizable models I. , 2010, The journal of physical chemistry. B.

[4]  Wei Zhao,et al.  Performance of quantum chemically derived charges and persistence of ion cages in ionic liquids. A molecular dynamics simulations study of 1-n-butyl-3-methylimidazolium bromide. , 2011, The journal of physical chemistry. B.

[5]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[6]  M. Alderton,et al.  Distributed multipole analysis , 2006 .

[7]  O. Borodin,et al.  Influence of polarization on structural, thermodynamic, and dynamic properties of ionic liquids obtained from molecular dynamics simulations. , 2010, The journal of physical chemistry. B.

[8]  Rudolph A. Marcus,et al.  Electrostatic Free Energy and Other Properties of States Having Nonequilibrium Polarization. I , 1956 .

[9]  M. Klein,et al.  Structural correlations and charge ordering in a room-temperature ionic liquid. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[10]  J. Brennecke,et al.  Thermodynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate from Monte Carlo simulations , 2002 .

[11]  O. Steinhauser,et al.  On the collective network of ionic liquid/water mixtures. II. Decomposition and interpretation of dielectric spectra. , 2008, The Journal of chemical physics.

[12]  L. Dang,et al.  Computational studies of structures and dynamics of 1,3-dimethylimidazolim salt liquids and their interfaces using polarizable potential models. , 2009, The journal of physical chemistry. A.

[13]  O. Steinhauser,et al.  Collective rotational dynamics in ionic liquids: a computational and experimental study of 1-butyl-3-methyl-imidazolium tetrafluoroborate. , 2007, The Journal of chemical physics.

[14]  I. Gould,et al.  The Structure of Imidazolium-Based Ionic Liquids: Insights From Ion-Pair Interactions , 2007 .

[15]  O. Steinhauser,et al.  Using fit functions in computational dielectric spectroscopy. , 2010, The Journal of chemical physics.

[16]  R. Berger,et al.  Towards multiscale modeling of ionic liquids: From electronic structure to bulk properties , 2010 .

[17]  W. V. van Gunsteren,et al.  On the Calculation of Atomic Forces in Classical Simulation Using the Charge-on-Spring Method To Explicitly Treat Electronic Polarization. , 2007, Journal of chemical theory and computation.

[18]  M. Bühl,et al.  Ab initio molecular dynamics of liquid 1,3-dimethylimidazolium chloride. , 2005, The journal of physical chemistry. B.

[19]  Oleg Borodin,et al.  Structure and dynamics of N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid from molecular dynamics simulations. , 2006, The journal of physical chemistry. B.

[20]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[21]  L. Delle Site,et al.  Ionic charge reduction and atomic partial charges from first-principles calculations of 1,3-dimethylimidazolium chloride. , 2010, The journal of physical chemistry. B.

[22]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[23]  O. Steinhauser,et al.  Computer simulation and the dielectric constant of polarizable polar systems , 1984 .

[24]  G. Voth,et al.  Molecular dynamics simulation of the energetic room-temperature ionic liquid, 1-hydroxyethyl-4-amino-1,2,4-triazolium nitrate (HEATN). , 2008, The journal of physical chemistry. B.

[25]  P. Madden,et al.  The construction of a reliable potential for GeO2 from first principles , 2009, 1001.1843.

[26]  O. Steinhauser,et al.  On the dielectric conductivity of molecular ionic liquids. , 2009, The Journal of chemical physics.

[27]  Edward J Maginn,et al.  Atomistic simulation of the thermodynamic and transport properties of ionic liquids. , 2007, Accounts of chemical research.

[28]  O. Steinhauser,et al.  On the computation and contribution of conductivity in molecular ionic liquids. , 2008, The Journal of chemical physics.

[29]  A. Triolo,et al.  Effect of cation symmetry and alkyl chain length on the structure and intermolecular dynamics of 1,3-dialkylimidazolium bis(trifluoromethanesulfonyl)amide ionic liquids. , 2009, The journal of physical chemistry. B.

[30]  A. Pádua,et al.  Molecular Force Field for Ionic Liquids Composed of Triflate or Bistriflylimide Anions , 2004 .

[31]  Alexander D. MacKerell,et al.  Determination of Electrostatic Parameters for a Polarizable Force Field Based on the Classical Drude Oscillator. , 2005, Journal of chemical theory and computation.

[32]  J. Kolafa,et al.  Molecular dynamics study of conductivity of ionic liquids: The Kohlrausch law , 2007 .

[33]  P. T. V. Duijnen,et al.  Molecular and Atomic Polarizabilities: Thole's Model Revisited , 1998 .

[34]  A. Pádua,et al.  Nanostructural organization in ionic liquids. , 2006, The journal of physical chemistry. B.

[35]  A. Bagno,et al.  Computer simulation of diffusion coefficients of the room-temperature ionic liquid [bmim][BF4]: Problems with classical simulation techniques , 2007 .

[36]  M. Ribeiro,et al.  Molecular dynamics simulation of the ionic liquid N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide. , 2007, The journal of physical chemistry. B.

[37]  E. Maginn,et al.  Molecular Dynamics Study of the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate , 2002 .

[38]  G. Voth,et al.  Molecular Dynamics Simulation of Ionic Liquids: The Effect of Electronic Polarizability , 2004 .

[39]  Wenchuan Wang,et al.  A refined force field for molecular simulation of imidazolium-based ionic liquids , 2004 .

[40]  D. Wolf,et al.  Molecular dynamics study of screening in ionic fluids , 2000 .

[41]  Alexander D. MacKerell,et al.  Understanding the dielectric properties of liquid amides from a polarizable force field. , 2008, The journal of physical chemistry. B.

[42]  Benoît Roux,et al.  Atomic Level Anisotropy in the Electrostatic Modeling of Lone Pairs for a Polarizable Force Field Based on the Classical Drude Oscillator. , 2006, Journal of chemical theory and computation.

[43]  O. Steinhauser On the Orientational Structure and Dielectric Properties of Water. A Comparison of ST2 and MCY Potential , 1983 .

[44]  R. Bell,et al.  The electrostatic energy of dipole molecules in different media , 1931 .

[45]  Wilfred F. van Gunsteren,et al.  Development of a simple, self-consistent polarizable model for liquid water , 2003 .

[46]  M. Maroncelli,et al.  An improved four-site ionic liquid model. , 2010, The journal of physical chemistry. B.

[47]  G. Voth,et al.  On the Structure and Dynamics of Ionic Liquids , 2004 .

[48]  M. Born über die Beweglichkeit der elektrolytischen Ionen , 1920 .

[49]  Iuliia V. Voroshylova,et al.  A new force field model for the simulation of transport properties of imidazolium-based ionic liquids. , 2011, Physical chemistry chemical physics : PCCP.

[50]  Robin D. Rogers,et al.  Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation , 2001 .

[51]  O. Steinhauser,et al.  Simulating polarizable molecular ionic liquids with Drude oscillators. , 2010, The Journal of chemical physics.

[52]  O. Borodin Polarizable force field development and molecular dynamics simulations of ionic liquids. , 2009, The journal of physical chemistry. B.

[53]  P. Kollman,et al.  Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation , 1993 .

[54]  G. Voth,et al.  A Multiscale Coarse-Graining Study of the Liquid/Vacuum Interface of Room-Temperature Ionic Liquids with Alkyl Substituents of Different Lengths , 2008 .

[55]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[56]  Wei Zhao,et al.  A Refined All-Atom Model for the Ionic Liquid 1-n-Butyl 3-Methylimidazolium bis(Trifluoromethylsulfonyl)imide [bmim][Tf2N] , 2007 .

[57]  M. Maroncelli,et al.  Nonreactive Dynamics in Solution: The Emerging Molecular View of Solvation Dynamics and Vibrational Relaxation , 1996 .

[58]  Maria Forsyth,et al.  Low viscosity ionic liquids based on organic salts of the dicyanamide anion , 2001 .

[59]  S. Teat,et al.  Solid and liquid charge-transfer complex formation between 1-methylnaphthalene and 1-alkyl-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide ionic liquids. , 2010, Physical chemistry chemical physics : PCCP.

[60]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[61]  H. Stassen,et al.  Computational Study of Room Temperature Molten Salts Composed by 1-Alkyl-3-methylimidazolium CationsForce-Field Proposal and Validation , 2002 .

[62]  Stefan Boresch,et al.  RATIONALIZATION OF THE DIELECTRIC PROPERTIES OF COMMON THREE-SITE WATER MODELS IN TERMS OF THEIR FORCE FIELD PARAMETERS , 1998 .

[63]  O. Steinhauser,et al.  The influence of polarizability on the dielectric spectrum of the ionic liquid 1-ethyl-3-methylimidazolium triflate. , 2011, Physical chemistry chemical physics : PCCP.

[64]  L. Gladden,et al.  Structure and dynamics of 1-ethyl-3-methylimidazolium acetate via molecular dynamics and neutron diffraction. , 2010, The journal of physical chemistry. B.

[65]  O. Steinhauser,et al.  Simulation studies of ionic liquids: orientational correlations and static dielectric properties. , 2006, The Journal of chemical physics.

[66]  Haibo Yu,et al.  Accounting for polarization in molecular simulation , 2005, Comput. Phys. Commun..

[67]  O. Steinhauser,et al.  The influence of electrostatic forces on the structure and dynamics of molecular ionic liquids. , 2008, The Journal of chemical physics.

[68]  B. Berne,et al.  Computer simulation of a green chemistry room-temperature ionic solvent , 2002 .

[69]  H. Leeb,et al.  An exact inversion method for the determination of spin–orbit potentials from scattering data , 1998 .

[70]  A. Stuchebrukhov,et al.  Electronic continuum model for molecular dynamics simulations. , 2009, The Journal of chemical physics.

[71]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[72]  J. Thar,et al.  Towards a molecular understanding of cation-anion interactions--probing the electronic structure of imidazolium ionic liquids by NMR spectroscopy, X-ray photoelectron spectroscopy and theoretical calculations. , 2010, Chemistry.

[73]  A. Pádua,et al.  Modeling Ionic Liquids Using a Systematic All-Atom Force Field , 2004 .

[74]  M. Ribeiro,et al.  Structure of ionic liquids of 1-alkyl-3-methylimidazolium cations: a systematic computer simulation study. , 2004, The Journal of chemical physics.

[75]  C. Hardacre,et al.  Application of static charge transfer within an ionic-liquid force field and its effect on structure and dynamics. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[76]  S. Balasubramanian,et al.  Refined potential model for atomistic simulations of ionic liquid [bmim][PF6]. , 2007, The Journal of chemical physics.

[77]  S. Price,et al.  Intermolecular potentials for simulations of liquid imidazolium salts , 2001 .