In-situ three-dimensional microstructural investigation of solidification of an Al-Cu alloy by ultrafast x-ray microtomography

This article presents the first results of a new experimental technique developed to investigate the evolution of the morphology of the solid and liquid phases during the solidification of a metallic alloy. It consists of ultrafast X-ray microtomography observations of a solidifying aluminum-copper alloy carried out at ESRF. These experiments allow investigating in-situ the formation of the casting microstructure and of the evolution of the morphology of the solid and the liquid phases. It allows also the in-situ determination of the solidification path, of the variation of the copper content in both the liquid and solid phases, and of some other characteristic parameters of the microstructure. Provided that some forthcoming technical improvements on the experimental setup are performed, more quantitative results can be obtained as well as better image quality and resolution.

[1]  B. Niroumand,et al.  3D study of the structure of primary crystals in a rheocast Al–Cu alloy , 2000 .

[2]  Hongbiao Dong,et al.  Determination of liquid fraction during solidification of aluminium alloys using a single-pan scanning calorimeter , 2003 .

[3]  L. F. Mondolfo Aluminum alloys: Structure and properties , 1976 .

[4]  W. Bender,et al.  The morphology of high volume fraction solid-liquid mixtures: An application of microstructural tomography , 1997 .

[5]  John W. Elmer,et al.  Measurement of the density of liquid aluminum alloys by an X-ray attenuation technique , 1999 .

[6]  Peter W Voorhees,et al.  Three-dimensional characterization of dendritic microstructures , 2001 .

[7]  I. Ohnaka Mathematical Analysis of Solute Redistribution during Solidification with Diffusion in Solid Phase , 1986 .

[8]  P. Voorhees,et al.  Morphological evolution of dendritic microstructures , 2002 .

[9]  P. Cloetens,et al.  X-ray micro-tomography an attractive characterisation technique in materials science , 2003 .

[10]  M. Rappaz,et al.  3D stochastic modelling of equiaxed solidification in the presence of grain movement , 1994 .

[11]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[12]  M. Rappaz,et al.  3D probabilistic modelling of equiaxed eutectic solidification , 1993 .

[13]  A. Jacot,et al.  Last-stage solidification of alloys: Theoretical model of dendrite-arm and grain coalescence , 2003 .

[14]  J. Drezet,et al.  In-situ Observation of Hot tearing Formation in Succinonitrile-Acetone , 2001 .

[15]  J. Drezet,et al.  A new hot-tearing criterion , 1999 .

[16]  Lorenz Ratke,et al.  In-Situ Optical Determination of Fraction Solid , 2004 .

[17]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .

[18]  Didier Bouvard,et al.  In situ microtomography investigation of metal powder compacts during sintering , 2003 .

[19]  T. Weitkamp,et al.  Time-resolved x-ray imaging of aluminum alloy solidification processes , 2002 .

[20]  J. Koster,et al.  Radioscopic visualization of melting, alloying and solidification of pure Al and Al–Cu , 2003 .

[21]  Kenneth R. Hall,et al.  An algebraic method that includes Gibbs minimization for performing phase equilibrium calculations for any number of components or phases , 2003 .

[22]  Timm Weitkamp,et al.  Time Resolved X-Ray Imaging of Dendritic Growth in Binary Alloys , 1999 .

[23]  Simon G. J. Mochrie,et al.  Fast CCD camera for x-ray photon correlation spectroscopy and time-resolved x-ray scattering and imaging , 2004 .

[24]  P. Voorhees,et al.  Quantitative serial sectioning analysis , 2001, Journal of microscopy.