Dynamic cooperation and competition between brain systems during cognitive control

[1]  Andrew Zalesky,et al.  Complexity in relational processing predicts changes in functional brain network dynamics. , 2014, Cerebral cortex.

[2]  Eswar Damaraju,et al.  Tracking whole-brain connectivity dynamics in the resting state. , 2014, Cerebral cortex.

[3]  O. Sporns,et al.  Structural and Functional Aspects Relating to Cost and Benefit of Rich Club Organization in the Human Cerebral Cortex , 2013, Cerebral cortex.

[4]  Timothy O. Laumann,et al.  Parcellating an Individual Subject's Cortical and Subcortical Brain Structures Using Snowball Sampling of Resting-State Correlations , 2013, Cerebral cortex.

[5]  D. Sharp,et al.  The role of the posterior cingulate cortex in cognition and disease. , 2014, Brain : a journal of neurology.

[6]  Michael Breakspear,et al.  Graph analysis of the human connectome: Promise, progress, and pitfalls , 2013, NeuroImage.

[7]  Jonathan D. Power,et al.  Multi-task connectivity reveals flexible hubs for adaptive task control , 2013, Nature Neuroscience.

[8]  L. Yao,et al.  Top-Down Regulation of Default Mode Activity in Spatial Visual Attention , 2013, The Journal of Neuroscience.

[9]  Jonathan D. Power,et al.  Control-related systems in the human brain , 2013, Current Opinion in Neurobiology.

[10]  Karl J. Friston,et al.  Network discovery with large DCMs , 2013, NeuroImage.

[11]  H. Critchley,et al.  Visceral Influences on Brain and Behavior , 2013, Neuron.

[12]  Andrew Zalesky,et al.  Altered Functional Brain Connectivity in a Non-Clinical Sample of Young Adults with Attention-Deficit/Hyperactivity Disorder , 2012, The Journal of Neuroscience.

[13]  Michael W. Cole,et al.  The role of default network deactivation in cognition and disease , 2012, Trends in Cognitive Sciences.

[14]  Mark D'Esposito,et al.  Alpha-Band Phase Synchrony Is Related to Activity in the Fronto-Parietal Adaptive Control Network , 2012, The Journal of Neuroscience.

[15]  A. Zalesky,et al.  Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection , 2012, Proceedings of the National Academy of Sciences.

[16]  O. Sporns,et al.  High-cost, high-capacity backbone for global brain communication , 2012, Proceedings of the National Academy of Sciences.

[17]  Timothy E. J. Behrens,et al.  Tools of the trade: psychophysiological interactions and functional connectivity. , 2012, Social cognitive and affective neuroscience.

[18]  Alex Fornito,et al.  Functional alterations of large‐scale brain networks related to cognitive control in obsessive‐compulsive disorder , 2012, Human brain mapping.

[19]  Robert Leech,et al.  Salience network integrity predicts default mode network function after traumatic brain injury , 2012, Proceedings of the National Academy of Sciences.

[20]  Stephen M. Smith,et al.  Temporally-independent functional modes of spontaneous brain activity , 2012, Proceedings of the National Academy of Sciences.

[21]  Patrick R Hof,et al.  FEATURE ARTICLE Distinctive Neurons of the Anterior Cingulate and Frontoinsular Cortex: A Historical Perspective , 2012 .

[22]  Rodrigo M. Braga,et al.  Echoes of the Brain within the Posterior Cingulate Cortex , 2012, The Journal of Neuroscience.

[23]  Karl J. Friston,et al.  DCM for complex-valued data: Cross-spectra, coherence and phase-delays , 2012, NeuroImage.

[24]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[25]  O. Sporns,et al.  Rich-Club Organization of the Human Connectome , 2011, The Journal of Neuroscience.

[26]  V. Menon Large-scale brain networks and psychopathology: a unifying triple network model , 2011, Trends in Cognitive Sciences.

[27]  Timothy E. Ham,et al.  Default Mode Network Connectivity Predicts Sustained Attention Deficits after Traumatic Brain Injury , 2011, The Journal of Neuroscience.

[28]  Marnie E. Shaw,et al.  Default network connectivity during a working memory task , 2011, Human brain mapping.

[29]  Jong H. Yoon,et al.  General and Specific Functional Connectivity Disturbances in First-Episode Schizophrenia During Cognitive Control Performance , 2011, Biological Psychiatry.

[30]  Etienne Koechlin,et al.  Frontal pole function: what is specifically human? , 2011, Trends in Cognitive Sciences.

[31]  Marcus E. Raichle,et al.  The Restless Brain , 2011, Brain Connect..

[32]  Karl J. Friston Functional and Effective Connectivity: A Review , 2011, Brain Connect..

[33]  Karl J. Friston,et al.  Network discovery with DCM , 2011, NeuroImage.

[34]  M. Gazzaniga,et al.  Understanding complexity in the human brain , 2011, Trends in Cognitive Sciences.

[35]  James A. Roberts,et al.  Biophysical Mechanisms of Multistability in Resting-State Cortical Rhythms , 2011, The Journal of Neuroscience.

[36]  Adam Gazzaley,et al.  Differential coupling of visual cortex with default network or frontal-parietal network based on goals , 2011, Nature Neuroscience.

[37]  Daniel L. Schacter,et al.  Solving future problems: Default network and executive activity associated with goal-directed mental simulations , 2011, NeuroImage.

[38]  Danielle S Bassett,et al.  Brain graphs: graphical models of the human brain connectome. , 2011, Annual review of clinical psychology.

[39]  Cedric E. Ginestet,et al.  Statistical parametric network analysis of functional connectivity dynamics during a working memory task , 2011, NeuroImage.

[40]  D. Sharp,et al.  Fractionating the Default Mode Network: Distinct Contributions of the Ventral and Dorsal Posterior Cingulate Cortex to Cognitive Control , 2011, The Journal of Neuroscience.

[41]  S. Gilbert Decoding the Content of Delayed Intentions , 2011, The Journal of Neuroscience.

[42]  Edward T. Bullmore,et al.  Network-based statistic: Identifying differences in brain networks , 2010, NeuroImage.

[43]  S. Phillips,et al.  Relational knowledge: the foundation of higher cognition , 2010, Trends in Cognitive Sciences.

[44]  Daniel L. Schacter,et al.  Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition , 2010, NeuroImage.

[45]  O. Sporns Networks of the Brain , 2010 .

[46]  A. Kleinschmidt,et al.  Intrinsic Connectivity Networks, Alpha Oscillations, and Tonic Alertness: A Simultaneous Electroencephalography/Functional Magnetic Resonance Imaging Study , 2010, The Journal of Neuroscience.

[47]  Caterina Gratton,et al.  Double dissociation of two cognitive control networks in patients with focal brain lesions , 2010, Proceedings of the National Academy of Sciences.

[48]  S. Bressler,et al.  Large-scale brain networks in cognition: emerging methods and principles , 2010, Trends in Cognitive Sciences.

[49]  V. Menon,et al.  Saliency, switching, attention and control: a network model of insula function , 2010, Brain Structure and Function.

[50]  R. Buckner,et al.  Functional-Anatomic Fractionation of the Brain's Default Network , 2010, Neuron.

[51]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[52]  K. Christoff,et al.  Experience sampling during fMRI reveals default network and executive system contributions to mind wandering , 2009, Proceedings of the National Academy of Sciences.

[53]  Y. Suchy,et al.  Executive Functioning: Overview, Assessment, and Research Issues for Non-Neuropsychologists , 2009, Annals of behavioral medicine : a publication of the Society of Behavioral Medicine.

[54]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[55]  A. Craig,et al.  How do you feel — now? The anterior insula and human awareness , 2009, Nature Reviews Neuroscience.

[56]  Justin L. Vincent,et al.  Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. , 2008, Journal of neurophysiology.

[57]  V. Menon,et al.  A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks , 2008, Proceedings of the National Academy of Sciences.

[58]  B. Harrison,et al.  Consistency and functional specialization in the default mode brain network , 2008, Proceedings of the National Academy of Sciences.

[59]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[60]  David Badre,et al.  Cognitive control, hierarchy, and the rostro–caudal organization of the frontal lobes , 2008, Trends in Cognitive Sciences.

[61]  S. Petersen,et al.  A dual-networks architecture of top-down control , 2008, Trends in Cognitive Sciences.

[62]  Paul C. Fletcher,et al.  Separable Forms of Reality Monitoring Supported by Anterior Prefrontal Cortex , 2008, Journal of Cognitive Neuroscience.

[63]  Bharat B. Biswal,et al.  Competition between functional brain networks mediates behavioral variability , 2008, NeuroImage.

[64]  F. Castellanos,et al.  Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis , 2007, Neuroscience & Biobehavioral Reviews.

[65]  Karl J. Friston,et al.  Comparing hemodynamic models with DCM , 2007, NeuroImage.

[66]  Justin L. Vincent,et al.  Distinct brain networks for adaptive and stable task control in humans , 2007, Proceedings of the National Academy of Sciences.

[67]  G. Glover,et al.  Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control , 2007, The Journal of Neuroscience.

[68]  Scott T. Grafton,et al.  Wandering Minds: The Default Network and Stimulus-Independent Thought , 2007, Science.

[69]  Kristina M. Visscher,et al.  The neural bases of momentary lapses in attention , 2006, Nature Neuroscience.

[70]  Kristina M. Visscher,et al.  A Core System for the Implementation of Task Sets , 2006, Neuron.

[71]  Jeffrey R. Binder,et al.  Interrupting the “stream of consciousness”: An fMRI investigation , 2006, NeuroImage.

[72]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Abraham Z. Snyder,et al.  The BOLD onset transient: identification of novel functional differences in schizophrenia , 2005, NeuroImage.

[74]  Adam Gazzaley,et al.  Measuring functional connectivity during distinct stages of a cognitive task , 2004, NeuroImage.

[75]  Jonathan D. Cohen,et al.  Anterior Cingulate Conflict Monitoring and Adjustments in Control , 2004, Science.

[76]  E. Stein,et al.  Multiple Neuronal Networks Mediate Sustained Attention , 2003, Journal of Cognitive Neuroscience.

[77]  J. Binder,et al.  A Parametric Manipulation of Factors Affecting Task-induced Deactivation in Functional Neuroimaging , 2003, Journal of Cognitive Neuroscience.

[78]  R. D. Gordon,et al.  Executive control of visual attention in dual-task situations. , 2001, Psychological review.

[79]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[80]  R. Knight,et al.  Prefrontal–cingulate interactions in action monitoring , 2000, Nature Neuroscience.

[81]  J. Pujol,et al.  Functional magnetic resonance imaging study of frontal lobe activation during word generation in obsessive–compulsive disorder , 1999, Biological Psychiatry.

[82]  C. Kennard,et al.  Saccadic eye movement and working memory deficits following damage to human prefrontal cortex , 1998, Neuropsychologia.

[83]  P C Wason,et al.  Reasoning about a Rule , 1968, The Quarterly journal of experimental psychology.