Gradient descent algorithms for quantile regression with smooth approximation

Gradient based optimization methods often converge quickly to a local optimum. However, the check loss function used by quantile regression model is not everywhere differentiable, which prevents the gradient based optimization methods from being applicable. As such, this paper introduces a smooth function to approximate the check loss function so that the gradient based optimization methods could be employed for fitting quantile regression model. The properties of the smooth approximation are discussed. Two algorithms are proposed for minimizing the smoothed objective function. The first method directly applies gradient descent, resulting the gradient descent smooth quantile regression model; the second approach minimizes the smoothed objective function in the framework of functional gradient descent by changing the fitted model along the negative gradient direction in each iteration, which yields boosted smooth quantile regression algorithm. Extensive experiments on simulated data and real-world data show that, compared to alternative quantile regression models, the proposed smooth quantile regression algorithms can achieve higher prediction accuracy and are more efficient in removing noninformative predictors.

[1]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[2]  Olvi L. Mangasarian,et al.  A class of smoothing functions for nonlinear and mixed complementarity problems , 1996, Comput. Optim. Appl..

[3]  Alexander J. Smola,et al.  Nonparametric Quantile Estimation , 2006, J. Mach. Learn. Res..

[4]  Ji Zhu,et al.  Quantile Regression in Reproducing Kernel Hilbert Spaces , 2007 .

[5]  John Langford,et al.  Predicting Conditional Quantiles via Reduction to Classification , 2006, UAI.

[6]  Yuh-Jye Lee,et al.  SSVM: A Smooth Support Vector Machine for Classification , 2001, Comput. Optim. Appl..

[7]  Toniann Pitassi,et al.  A Gradient-Based Boosting Algorithm for Regression Problems , 2000, NIPS.

[8]  Jooyong Shim,et al.  A Simple Quantile Regression via Support Vector Machine , 2005, ICNC.

[9]  R. Koenker,et al.  Regression Quantiles , 2007 .

[10]  Peter Buhlmann,et al.  BOOSTING ALGORITHMS: REGULARIZATION, PREDICTION AND MODEL FITTING , 2007, 0804.2752.

[11]  G. R. Walsh,et al.  Methods Of Optimization , 1976 .

[12]  Stan Z. Li,et al.  FloatBoost learning and statistical face detection , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Insuk Sohn,et al.  New normalization methods using support vector machine quantile regression approach in microarray analysis , 2008, Comput. Stat. Data Anal..

[14]  I. Sohn,et al.  Support Vector Machine Quantile Regression for Detecting Differentially Expressed Genes in Microarray Analysis , 2008, Methods of Information in Medicine.

[15]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[16]  Ji Zhu,et al.  L1-Norm Quantile Regression , 2008 .

[17]  B. Cade,et al.  A gentle introduction to quantile regression for ecologists , 2003 .

[18]  R. Koenker,et al.  Robust Tests for Heteroscedasticity Based on Regression Quantiles , 1982 .

[19]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[20]  Richard A. Berk,et al.  Boosting the Quantile Distribution: A Cost-Sensitive Statistical Learning Procedure , 2007 .

[21]  David P. Helmbold,et al.  Boosting Methods for Regression , 2002, Machine Learning.

[22]  P. Bühlmann,et al.  Boosting With the L2 Loss , 2003 .

[23]  T. Hassard,et al.  Applied Linear Regression , 2005 .

[24]  R. Koenker Quantile Regression: Name Index , 2005 .

[25]  A. Belloni,et al.  L1-Penalised quantile regression in high-dimensional sparse models , 2009 .

[26]  R. Koenker,et al.  An interior point algorithm for nonlinear quantile regression , 1996 .

[27]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[28]  S. Weisberg Applied Linear Regression: Weisberg/Applied Linear Regression 3e , 2005 .

[29]  Peng Zhao,et al.  Stagewise Lasso , 2007, J. Mach. Learn. Res..

[30]  A. Belloni,et al.  L1-Penalized Quantile Regression in High Dimensional Sparse Models , 2009, 0904.2931.

[31]  B. Yu,et al.  Boosting with the L_2-Loss: Regression and Classification , 2001 .

[32]  Nicolai Meinshausen,et al.  Quantile Regression Forests , 2006, J. Mach. Learn. Res..

[33]  D. Hunter,et al.  Quantile Regression via an MM Algorithm , 2000 .

[34]  R. Koenker,et al.  Hierarchical Spline Models for Conditional Quantiles and the Demand for Electricity , 1990 .

[35]  Xuming He,et al.  Bent Line Quantile Regression with Application to an Allometric Study of Land Mammals' Speed and Mass , 2011, Biometrics.

[36]  Peter L. Bartlett,et al.  Boosting Algorithms as Gradient Descent , 1999, NIPS.

[37]  Yufeng Liu,et al.  VARIABLE SELECTION IN QUANTILE REGRESSION , 2009 .

[38]  Songfeng Zheng,et al.  Boosting Based Conditional Quantile Estimation for Regression and Binary Classification , 2010, MICAI.

[39]  Antonio Torralba,et al.  Sharing features: efficient boosting procedures for multiclass object detection , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..