Fuzzy Genetic Approach for Estimating Reference Evapotranspiration of Turkey: Mediterranean Region

The applicability of fuzzy genetic (FG) approach in modeling reference evapotranspiration (ET0) is investigated in this study. Daily solar radiation, air temperature, relative humidity and wind speed data of two stations, Isparta and Antalya, in Mediterranean region of Turkey, are used as inputs to the FG models to estimate ET0 obtained using the FAO-56 Penman–Monteith equation. The FG estimates are compared with those of the artificial neural networks (ANN). Root mean-squared error, mean absolute error and determination coefficient statistics were used as comparison criteria for the evaluation of the models’ accuracies. It was found that the FG models generally performed better than the ANN models in modeling ET0 of Mediterranean region of Turkey.

[1]  K. P. Sudheer,et al.  Estimating Actual Evapotranspiration from Limited Climatic Data Using Neural Computing Technique , 2003 .

[2]  M. Keskin,et al.  Fuzzy logic model approaches to daily pan evaporation estimation in western Turkey / Estimation de l’évaporation journalière du bac dans l’Ouest de la Turquie par des modèles à base de logique floue , 2004 .

[3]  J. B. Kiszka,et al.  The influence of some fuzzy implication operators on the accuracy of a fuzzy model-part II , 1985 .

[4]  Ö. Kisi Generalized regression neural networks for evapotranspiration modelling , 2006 .

[5]  K. P. Sudheer,et al.  Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation , 2008 .

[6]  Narendra Singh Raghuwanshi,et al.  Development and Validation of GANN Model for Evapotranspiration Estimation , 2009 .

[7]  Evaluation of evapotranspiration estimation methods for sweet cherry trees (Prunus avium) in sub-humid climate. , 2007, Pakistan journal of biological sciences : PJBS.

[8]  O. Kisi The potential of different ANN techniques in evapotranspiration modelling , 2008 .

[9]  Zekai Şen,et al.  Fuzzy algorithm for estimation of solar irradiation from sunshine duration , 1998 .

[10]  V. Singh,et al.  Estimating Daily Pan Evaporation Using Different Data-Driven Methods and Lag-Time Patterns , 2013, Water Resources Management.

[11]  R. Allen,et al.  Evapotranspiration and Irrigation Water Requirements , 1990 .

[12]  Hung Soo Kim,et al.  Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling , 2008 .

[13]  A. R. Khoob,et al.  Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment , 2008, Irrigation Science.

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[15]  Ozgur Kisi,et al.  Evapotranspiration modelling from climatic data using a neural computing technique , 2007 .

[16]  Ioannis K. Tsanis,et al.  Hydroinformatics in evapotranspiration estimation , 2003, Environ. Model. Softw..

[17]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[18]  O. Kisi,et al.  Discussion of “Forecasting of Reference Evapotranspiration by Artificial Neural Networks” by Slavisa Trajkovic, Branimir Todorovic, and Miomir Stankovic , 2005 .

[19]  N. S. Raghuwanshi,et al.  Comparative study of conventional and artificial neural network-based ETo estimation models , 2008, Irrigation Science.

[20]  Q. J. Wang The Genetic Algorithm and Its Application to Calibrating Conceptual Rainfall-Runoff Models , 1991 .

[21]  Ozgur Kisi,et al.  Streamflow Forecasting Using Different Artificial Neural Network Algorithms , 2007 .

[22]  Branimir Todorovic,et al.  Forecasting of Reference Evapotranspiration by Artificial Neural Networks , 2003 .

[23]  N. Mahowald,et al.  Global review and synthesis of trends in observed terrestrial near-surface wind speeds; implications for evaporation , 2012 .

[24]  Ozgur Kisi,et al.  Evapotranspiration modelling using support vector machines / Modélisation de l'évapotranspiration à l'aide de ‘support vector machines’ , 2009 .

[25]  Juan Vicente Giráldez,et al.  Assessing Reference Evapotranspiration by the Hargreaves Method in Southern Spain , 2004 .

[26]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[27]  Ozgur Kisi,et al.  Adaptive Neurofuzzy Computing Technique for Evapotranspiration Estimation , 2007 .

[28]  M. Cobaner Evapotranspiration estimation by two different neuro-fuzzy inference systems , 2011 .

[29]  Pau Martí,et al.  Reference evapotranspiration estimation without local climatic data , 2011, Irrigation Science.

[30]  A. R. Khoob,et al.  Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment , 2008, Irrigation science.

[31]  P. Gavilán,et al.  Comparison of Standardized Reference Evapotranspiration Equations in Southern Spain , 2008 .

[32]  N. S. Raghuwanshi,et al.  Artificial neural networks approach in evapotranspiration modeling: a review , 2010, Irrigation Science.

[33]  V. Singh,et al.  Trends in reference crop evapotranspiration over Iran , 2011 .

[34]  Hojjat Ahmadi,et al.  Prediction of Daily Pan Evaporation using Wavelet Neural Networks , 2012, Water Resources Management.

[35]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[36]  B. Kosko Fuzzy Thinking: The New Science of Fuzzy Logic , 1993 .

[37]  Discussion of “Estimating Actual Evapotranspiration from Limited Climatic Data Using Neural Computing Technique” by K. P. Sudheer, A. K. Gosain, and K. S. Ramasastri , 2005 .

[38]  Pau Martí,et al.  Assessment of a 4-input artificial neural network for ETo estimation through data set scanning procedures , 2010, Irrigation Science.

[39]  Samuel O. Russell,et al.  Reservoir Operating Rules with Fuzzy Programming , 1996 .

[40]  Arup Kumar Sarma,et al.  Genetic Algorithm for Optimal Operating Policy of a Multipurpose Reservoir , 2005 .

[41]  E. Uncuoğlu,et al.  Comparison of three backpropagation training algorithms for two case studies , 2010 .

[42]  H. E. Jobson Evaporation Into the Atmosphere: Theory, History, and Applications , 1982 .

[43]  Ozgur Kisi,et al.  Estimation of Daily Pan Evaporation Using Two Different Adaptive Neuro-Fuzzy Computing Techniques , 2012, Water Resources Management.

[44]  Shantilal Shah,et al.  Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment , 2008, Irrigation Science.

[45]  Mallikarjuna Perugu,et al.  Multiple Linear Correlation Analysis of Daily Reference Evapotranspiration , 2013, Water Resources Management.

[46]  Gorka Landeras,et al.  Forecasting weekly evapotranspiration with ARIMA and artificial neural network models. , 2009 .

[47]  O. Kisi,et al.  Comparison of three back-propagation training algorithms for two case studies , 2005 .

[48]  Vijay P. Singh,et al.  Trends in reference evapotranspiration in the humid region of northeast India , 2012 .

[49]  O. Kisi,et al.  Pan Evaporation Modeling Using Neural Computing Approach for Different Climatic Zones , 2012, Water Resources Management.

[50]  Özlem Terzi,et al.  Fuzzy Logic Model Approaches to Daily Pan Evaporation Estimation in Western Turkey , 2004 .

[51]  Avi Ostfeld,et al.  Multiobjective Contaminant Sensor Network Design for Water Distribution Systems , 2008 .

[52]  Ozgur Kisi,et al.  Evapotranspiration estimation using feed-forward neural networks , 2006 .

[53]  Slavisa Trajkovic,et al.  Temperature-based approaches for estimating reference evapotranspiration , 2005 .