Modelling creep behaviour and failure of 9Cr-0.5Mo-1.8W-VNb steel

Abstract In this paper, a continuum viscoplastic model including damage effects is used to describe the creep deformation and damage mechanisms of P92 steel in the temperature range 550–750 °C. In a first step, the results of creep tests performed at 575 °C are presented and compared to other literature results in order to bring the main mechanisms of P92 steel creep behaviour into relief. Subsequently, a model from the literature is chosen, implemented in a F.E. code and identified on the basis of experimental results obtained at different temperatures. Validation simulations show that the model reasonably simulates the creep and tensile response of the material. Last, specific aspects of the modelling regarding long-term evolutions are discussed.

[1]  P. J. Ennis,et al.  Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant , 1997 .

[2]  Ivan Tournié,et al.  Macroscopic results of long-term creep on a modified 9Cr–1Mo steel (T91) , 2009 .

[3]  Andreas Klenk,et al.  NUMERICAL MODELLING OF FERRITIC WELDS AND REPAIR WELDS , 2003 .

[4]  E. Quadrini,et al.  Analysis of the creep behaviour of modified P91 (9Cr–1Mo–NbV) welds , 2002 .

[5]  Pertti Auerkari,et al.  Creep damage and expected creep life for welded 9-11% Cr steels , 2007 .

[6]  Renaud Masson,et al.  Self-consistent estimates for the rate-dependentelastoplastic behaviour of polycrystalline materials , 1999 .

[7]  Yukio Tomita,et al.  Microstructural Evolution during Creep Test in 9Cr–2W–V–Ta Steels and 9Cr–1Mo–V–Nb Steels , 2001 .

[8]  Thomas H. Hyde,et al.  Finite-element creep damage analyses of P91 pipes , 2006 .

[9]  G. Rousselier,et al.  A simplified “polycrystalline” model for viscoplastic and damage finite element analyses , 2006 .

[10]  Fred Starr,et al.  Some aspects of plant and research experience in the use of new high strength martensitic steel P91 , 2007 .

[11]  Gunther Eggeler,et al.  The effect of long-term creep on particle coarsening in tempered martensite ferritic steels , 1989 .

[12]  M. F. Ashby,et al.  On creep fracture by void growth , 1982 .

[13]  B. Vandenberghe,et al.  T/P23, 24, 911 and 92: New grades for advanced coal-fired power plants—Properties and experience☆ , 2008 .

[14]  Fujimitsu Masuyama,et al.  Creep rupture life and design factors for high-strength ferritic steels , 2007 .

[15]  Robert L. Coble,et al.  A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials , 1963 .

[16]  M. E. Kassner,et al.  Creep cavitation in metals , 2003 .

[17]  René Chambon,et al.  A simplified second gradient model for dilatant materials: Theory and numerical implementation , 2008 .

[18]  Karl Maile,et al.  Evaluation of microstructural parameters in 9–12% Cr-steels , 2007 .

[19]  Fujio Abe,et al.  CREEP BEHAVIOR AND STABILITY OF MX PRECIPITATES AT HIGH TEMPERATURE IN 9CR–0.5MO–1.8W–VNB STEEL , 2001 .

[20]  Viggo Tvergaard,et al.  VOID GROWTH DUE TO CREEP AND GRAIN BOUNDARY DIFFUSION AT HIGH TRIAXIALITIES , 1995 .

[21]  Thomas H. Hyde,et al.  A review of the finite element analysis of repaired welds under creep conditions , 2003 .

[22]  David R Hayhurst,et al.  Creep constitutive equations for a 0.5Cr 0.5 Mo 0.25V ferritic steel in the temperature range 565°C-675°C , 2005 .

[23]  L. Kloc,et al.  Transition from power-law to viscous creep behaviour of p-91 type heat-resistant steel , 1997 .

[24]  Stefan Holmström,et al.  Factors influencing creep model equation selection , 2008 .

[25]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[26]  S. Ahzi,et al.  A self consistent approach of the large deformation polycrystal viscoplasticity , 1987 .

[27]  David R Hayhurst,et al.  A method for the transformation of creep constitutive equations , 1996 .

[28]  Tore Børvik,et al.  An experimental and numerical investigation of the behaviour of AA5083 aluminium alloy in presence of the Portevin–Le Chatelier effect , 2008 .