Method for the structural analysis of Twinkle mitochondrial DNA helicase by cryo-EM.

[1]  Robert W. Taylor,et al.  POLRMT mutations impair mitochondrial transcription causing neurological disease , 2021, Nature Communications.

[2]  P. Cramer,et al.  Small-molecule inhibitors of human mitochondrial DNA transcription , 2020, Nature.

[3]  W. Copeland,et al.  Consequences of compromised mitochondrial genome integrity. , 2020, DNA repair.

[4]  J Gomez-Blanco,et al.  DeepEMhancer: a deep learning solution for cryo-EM volume post-processing , 2020, Communications Biology.

[5]  M. Falkenberg,et al.  TWINKLE and Other Human Mitochondrial DNA Helicases: Structure, Function and Disease , 2020, Genes.

[6]  Wendy Wang,et al.  Single-molecule level structural dynamics of DNA unwinding by human mitochondrial Twinkle helicase , 2020, The Journal of Biological Chemistry.

[7]  Christopher J. Williams,et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix , 2019, Acta crystallographica. Section D, Structural biology.

[8]  F. Hensen,et al.  Mitochondrial RNA granules are critically dependent on mtDNA replication factors Twinkle and mtSSB , 2019, Nucleic acids research.

[9]  M. Falkenberg,et al.  Structural basis for adPEO-causing mutations in the mitochondrial TWINKLE helicase , 2018, Human molecular genetics.

[10]  S. Rahman,et al.  POLG-related disorders and their neurological manifestations , 2018, Nature Reviews Neurology.

[11]  M. Falkenberg,et al.  Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria , 2018, Nature Communications.

[12]  Joseph H. Davis,et al.  Addressing preferred specimen orientation in single-particle cryo-EM through tilting , 2017, Nature Methods.

[13]  S. Carr,et al.  Proximity Biotinylation as a Method for Mapping Proteins Associated with mtDNA in Living Cells. , 2017, Cell chemical biology.

[14]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[15]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[16]  C. Gustafsson,et al.  MGME1 processes flaps into ligatable nicks in concert with DNA polymerase γ during mtDNA replication , 2016, Nucleic acids research.

[17]  L. S. Kaguni,et al.  Structure, function and evolution of the animal mitochondrial replicative DNA helicase , 2016, Critical reviews in biochemistry and molecular biology.

[18]  A. Reyes,et al.  Human Mitochondrial DNA-Protein Complexes Attach to a Cholesterol-Rich Membrane Structure , 2015, Scientific Reports.

[19]  M. Valle,et al.  The hexameric structure of the human mitochondrial replicative helicase Twinkle , 2015, Nucleic acids research.

[20]  J. N. Spelbrink,et al.  Replication factors transiently associate with mtDNA at the mitochondrial inner membrane to facilitate replication , 2013, Nucleic acids research.

[21]  D. Chan,et al.  Tfam, a mitochondrial transcription and packaging factor, imposes a U-turn on mitochondrial DNA , 2011, Nature Structural &Molecular Biology.

[22]  C. Gustafsson,et al.  The mitochondrial DNA helicase TWINKLE can assemble on a closed circular template and support initiation of DNA synthesis , 2011, Nucleic acids research.

[23]  Marcos T. Oliveira,et al.  Functional Roles of the N- and C-Terminal Regions of the Human Mitochondrial Single-Stranded DNA-Binding Protein , 2010, PloS one.

[24]  W. Copeland,et al.  Disease Variants of the Human Mitochondrial DNA Helicase Encoded by C10orf2 Differentially Alter Protein Stability, Nucleotide Hydrolysis, and Helicase Activity*♦ , 2010, The Journal of Biological Chemistry.

[25]  J. Carazo,et al.  Dynamic Effects of Cofactors and DNA on the Oligomeric State of Human Mitochondrial DNA Helicase* , 2010, The Journal of Biological Chemistry.

[26]  Y. Yin,et al.  Structural Insight into Processive Human Mitochondrial DNA Synthesis and Disease-Related Polymerase Mutations , 2009, Cell.

[27]  J. N. Spelbrink,et al.  Twinkle mutations associated with autosomal dominant progressive external ophthalmoplegia lead to impaired helicase function and in vivo mtDNA replication stalling , 2008, Human molecular genetics.

[28]  M. Falkenberg,et al.  The N-terminal domain of TWINKLE contributes to single-stranded DNA binding and DNA helicase activities , 2007, Nucleic acids research.

[29]  C. Farr,et al.  Modular architecture of the hexameric human mitochondrial DNA helicase , 2006, Journal of molecular biology.

[30]  Kathleen M. Randolph,et al.  A novel processive mechanism for DNA synthesis revealed by structure, modeling and mutagenesis of the accessory subunit of human mitochondrial DNA polymerase. , 2006, Journal of molecular biology.

[31]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[32]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[33]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[34]  M. Falkenberg,et al.  Reconstitution of a minimal mtDNA replisome in vitro , 2004, The EMBO journal.

[35]  A. M. van der Bliek,et al.  Composition and dynamics of human mitochondrial nucleoids. , 2003, Molecular biology of the cell.

[36]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[37]  G. Comi,et al.  Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria , 2001, Nature Genetics.

[38]  Cheng Yang,et al.  Crystal structure of human mitochondrial single-stranded DNA binding protein at 2.4 Å resolution , 1997, Nature Structural Biology.