Codimensional incremental potential contact

We extend the incremental potential contact (IPC) model [Li et al. 2020a] for contacting elastodynamics to resolve systems composed of codimensional degrees-of-freedoms in arbitrary combination. This enables a unified, interpenetration-free, robust, and stable simulation framework that couples codimension-0,1,2, and 3 geometries seamlessly with frictional contact. Extending the IPC model to thin structures poses new challenges in computing strain, modeling thickness and determining collisions. To address these challenges we propose three corresponding contributions. First, we introduce a C2 constitutive barrier model that directly enforces strain limiting as an energy potential while preserving rest state. This provides energetically-consistent strain limiting models (both isotropic and anisotropic) for cloth that enable strict satisfaction of strain-limit inequalities with direct coupling to both elastodynamics and contact via minimization of the incremental potential. Second, to capture the geometric thickness of codimensional domains we extend the IPC model to directly enforce distance offsets. Our treatment imposes a strict guarantee that mid-surfaces (respectively mid-lines) of shells (respectively rods) will not move closer than applied thickness values, even as these thicknesses become characteristically small. This enables us to account for thickness in the contact behavior of codimensional structures and so robustly capture challenging contacting geometries; a number of which, to our knowledge, have not been simulated before. Third, codimensional models, especially with modeled thickness, mandate strict accuracy requirements that pose a severe challenge to all existing continuous collision detection (CCD) methods. To address these limitations we develop a new, efficient, simple-to-implement additive CCD (ACCD) method that applies conservative advancement [Mirtich 1996; Zhang et al. 2006] to iteratively refine a lower bound for deforming primitives, converging to time of impact. In combination these contributions enable codimensional IPC (C-IPC). We perform extensive benchmark experiments to validate the efficacy of our method in capturing intricate behaviors of thin-structure contact and resulting bulk effects. In our experiments C-IPC obtains feasible, convergent, and so artifact-free solutions for all time steps, across all tested examples - producing robust simulations. We test C-IPC across extreme deformations, large time steps, and exceedingly close contact over all possible pairings of codimensional domains. Finally, with our strain-limit model, we confirm C-IPC guarantees non-intersection and strain-limit satisfaction for all reasonable (and well below - verified down to 0.1%) strain limits throughout all time steps.

[1]  D. Kaufman,et al.  Guaranteed globally injective 3D deformation processing , 2021, ACM Trans. Graph..

[2]  M. Müller,et al.  Primal/Dual Descent Methods for Dynamics , 2020, Comput. Graph. Forum.

[3]  Theodore Kim,et al.  A Finite Element Formulation of Baraff‐Witkin Cloth , 2020, Comput. Graph. Forum.

[4]  Dinesh Manocha,et al.  P-Cloth: Interactive Complex Cloth Simulation on Multi-GPU Systems using Dynamic Matrix Assembly and Pipelined Implicit Integrators. , 2020 .

[5]  Dinesh Manocha,et al.  P-cloth , 2020, ACM Trans. Graph..

[6]  Florence Bertails-Descoubes,et al.  Projective dynamics with dry frictional contact , 2020, ACM Trans. Graph..

[7]  Rahul Narain,et al.  Homogenized yarn-level cloth , 2020, ACM Trans. Graph..

[8]  Gilles Daviet,et al.  Simple and scalable frictional contacts for thin nodal objects , 2020, ACM Trans. Graph..

[9]  Bernhard Thomaszewski,et al.  ADD , 2020, ACM Trans. Graph..

[10]  Miguel A. Otaduy,et al.  Mixing Yarns and Triangles in Cloth Simulation , 2020, Comput. Graph. Forum.

[11]  D. Kaufman,et al.  Hierarchical Optimization Time Integration for CFL-Rate MPM Stepping , 2019, ACM Trans. Graph..

[12]  Etienne Vouga,et al.  Locking-free Simulation of Isometric Thin Plates , 2019, ArXiv.

[13]  Xin Tong,et al.  A scalable galerkin multigrid method for real-time simulation of deformable objects , 2019, ACM Trans. Graph..

[14]  Chenfanfu Jiang,et al.  A hybrid material‐point spheropolygon‐element method for solid and granular material interaction , 2019, International Journal for Numerical Methods in Engineering.

[15]  Georg Stadler,et al.  Scalable simulation of realistic volume fraction red blood cell flows through vascular networks , 2019, SC.

[16]  Eitan Grinspun,et al.  A Unified Simplicial Model for Mixed-Dimensional and Non-Manifold Deformable Elastic Objects , 2019, PACMCGIT.

[17]  Xuchen Han,et al.  A Hybrid Material Point Method for Frictional Contact with Diverse Materials , 2019, PACMCGIT.

[18]  Chenfanfu Jiang,et al.  Decomposed optimization time integrator for large-step elastodynamics , 2019, ACM Trans. Graph..

[19]  Rahul Narain,et al.  Accurate dissipative forces in optimization integrators , 2018, ACM Trans. Graph..

[20]  Huamin Wang,et al.  Parallel Multigrid for Nonlinear Cloth Simulation , 2018, Comput. Graph. Forum.

[21]  Jan Bender,et al.  Direct Position‐Based Solver for Stiff Rods , 2018, Comput. Graph. Forum.

[22]  Eitan Grinspun,et al.  Foldsketch , 2018, ACM Trans. Graph..

[23]  Jie Li,et al.  An implicit frictional contact solver for adaptive cloth simulation , 2018, ACM Trans. Graph..

[24]  David I. W. Levin,et al.  Eulerian-on-lagrangian cloth simulation , 2018, ACM Trans. Graph..

[25]  Xuchen Han,et al.  A material point method for thin shells with frictional contact , 2018, ACM Trans. Graph..

[26]  Etienne Vouga,et al.  Physical simulation of environmentally induced thin shell deformation , 2018, ACM Trans. Graph..

[27]  Jie Li,et al.  ADMM ⊇ Projective Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints , 2017, IEEE Trans. Vis. Comput. Graph..

[28]  Joseph Teran,et al.  Modeling and data-driven parameter estimation for woven fabrics , 2017, Symposium on Computer Animation.

[29]  Ronald Fedkiw,et al.  Inequality cloth , 2017, Symposium on Computer Animation.

[30]  Chenfanfu Jiang,et al.  Anisotropic elastoplasticity for cloth, knit and hair frictional contact , 2017, ACM Trans. Graph..

[31]  Tiantian Liu,et al.  Quasi-newton methods for real-time simulation of hyperelastic materials , 2017, TOGS.

[32]  Matthias Müller,et al.  XPBD: position-based simulation of compliant constrained dynamics , 2016, MIG.

[33]  Elmar Schömer,et al.  Position and orientation based Cosserat rods , 2016, Symposium on Computer Animation.

[34]  Dinesh Manocha,et al.  CAMA: Contact‐Aware Matrix Assembly with Unified Collision Handling for GPU‐based Cloth Simulation , 2016, Comput. Graph. Forum.

[35]  Ruofeng Tong,et al.  Efficient and robust strain limiting and treatment of simultaneous collisions with semidefinite programming , 2016, Computational Visual Media.

[36]  Stephen F. McCormick,et al.  Smoothed aggregation multigrid for cloth simulation , 2015, ACM Trans. Graph..

[37]  Dinesh Manocha,et al.  TightCCD: Efficient and Robust Continuous Collision Detection using Tight Error Bounds , 2015, Comput. Graph. Forum.

[38]  Dinesh Manocha,et al.  Fast and exact continuous collision detection with Bernstein sign classification , 2014, ACM Trans. Graph..

[39]  Jan Bender,et al.  Position-based simulation of continuous materials , 2014, Comput. Graph..

[40]  Jyh-Ming Lien,et al.  Collision Prediction: Conservative Advancement Among Obstacles With Unknown Motion , 2014 .

[41]  Eitan Grinspun,et al.  Adaptive nonlinearity for collisions in complex rod assemblies , 2014, ACM Trans. Graph..

[42]  Craig Schroeder,et al.  Optimization Integrator for Large Time Steps , 2014, IEEE Transactions on Visualization and Computer Graphics.

[43]  Dinesh Manocha,et al.  Hierarchical and Controlled Advancement for Continuous Collision Detectionof Rigid and Articulated Models , 2014, IEEE Transactions on Visualization and Computer Graphics.

[44]  Jan Bender,et al.  Fast and stable cloth simulation based on multi-resolution shape matching , 2013, Comput. Graph..

[45]  Eitan Grinspun,et al.  Discrete bending forces and their Jacobians , 2013, Graph. Model..

[46]  Rahul Narain,et al.  A GPU‐based Streaming Algorithm for High‐Resolution Cloth Simulation , 2013, Comput. Graph. Forum.

[47]  James F. O'Brien,et al.  Adaptive anisotropic remeshing for cloth simulation , 2012, ACM Trans. Graph..

[48]  Alexey Stomakhin,et al.  Energetically consistent invertible elasticity , 2012, SCA '12.

[49]  Robert Bridson,et al.  Efficient geometrically exact continuous collision detection , 2012, ACM Trans. Graph..

[50]  Alessio Quaglino,et al.  Membrane locking in discrete shell theories , 2012 .

[51]  Steve Marschner,et al.  Data‐Driven Estimation of Cloth Simulation Models , 2012, Comput. Graph. Forum.

[52]  Florence Bertails-Descoubes,et al.  A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics , 2011, ACM Trans. Graph..

[53]  Olga Sorkine-Hornung,et al.  Interference-aware geometric modeling , 2011, ACM Trans. Graph..

[54]  Dinesh Manocha,et al.  VolCCD: Fast continuous collision culling between deforming volume meshes , 2011, TOGS.

[55]  Takeo Igarashi,et al.  Sensitive couture for interactive garment modeling and editing , 2011, ACM Trans. Graph..

[56]  Huamin Wang,et al.  Data-driven elastic models for cloth: modeling and measurement , 2011, ACM Trans. Graph..

[57]  Huamin Wang,et al.  Multi-resolution isotropic strain limiting , 2010, ACM Trans. Graph..

[58]  M. Gross,et al.  Unified simulation of elastic rods, shells, and solids , 2010, ACM Trans. Graph..

[59]  E. Vouga,et al.  Discrete viscous threads , 2010, ACM Trans. Graph..

[60]  Dinesh K. Pai,et al.  Geometric Numerical Integration of Inequality Constrained, Nonsmooth Hamiltonian Systems , 2010, SIAM J. Sci. Comput..

[61]  Kai Tang,et al.  A fully geometric approach for developable cloth deformation simulation , 2010, The Visual Computer.

[62]  Jos Stam,et al.  Nucleus: Towards a unified dynamics solver for computer graphics , 2009, 2009 11th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[63]  Eitan Grinspun,et al.  Asynchronous contact mechanics , 2009, ACM Trans. Graph..

[64]  Andrew Selle,et al.  Detail preserving continuum simulation of straight hair , 2009, ACM Trans. Graph..

[65]  Dinesh Manocha,et al.  C2A: Controlled conservative advancement for continuous collision detection of polygonal models , 2009, 2009 IEEE International Conference on Robotics and Automation.

[66]  Markus H. Gross,et al.  Implicit Contact Handling for Deformable Objects , 2009, Comput. Graph. Forum.

[67]  Wolfgang Straßer,et al.  Continuum‐based Strain Limiting , 2009, Comput. Graph. Forum.

[68]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[69]  Ronald Fedkiw,et al.  To appear in the ACM SIGGRAPH conference proceedings A Mass Spring Model for Hair Simulation , 2008 .

[70]  Eitan Grinspun,et al.  Robust treatment of simultaneous collisions , 2008, ACM Trans. Graph..

[71]  Eitan Grinspun,et al.  Discrete elastic rods , 2008, ACM Trans. Graph..

[72]  Robert Bridson,et al.  Animating developable surfaces using nonconforming elements , 2008, ACM Trans. Graph..

[73]  Jeong Whan Yoon,et al.  Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one‐point quadrature solid‐shell elements , 2008 .

[74]  Eitan Grinspun,et al.  To appear in the ACM SIGGRAPH conference proceedings Efficient Simulation of Inextensible Cloth , 2007 .

[75]  Young J. Kim,et al.  Continuous collision detection for articulated models using Taylor models and temporal culling , 2007, ACM Trans. Graph..

[76]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[77]  Stefanie Reese,et al.  A large deformation solid‐shell concept based on reduced integration with hourglass stabilization , 2007 .

[78]  Xinyu Zhang,et al.  Interactive continuous collision detection for non-convex polyhedra , 2006, The Visual Computer.

[79]  Hyeong-Seok Ko,et al.  Simulating complex hair with robust collision handling , 2005, SCA '05.

[80]  Ming C. Lin,et al.  Adaptive grouping and subdivision for simulating hair dynamics , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[81]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[82]  Jessica K. Hodgins,et al.  Estimating cloth simulation parameters from video , 2003, SCA '03.

[83]  R. Fedkiw,et al.  Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.

[84]  J. Marsden,et al.  Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .

[85]  Nadia Magnenat-Thalmann,et al.  Implementing fast cloth simulation with collision response , 2000, Proceedings Computer Graphics International 2000.

[86]  Rakesh K. Kapania,et al.  A survey of recent shell finite elements , 2000 .

[87]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[88]  R. Hauptmann,et al.  A SYSTEMATIC DEVELOPMENT OF 'SOLID-SHELL' ELEMENT FORMULATIONS FOR LINEAR AND NON-LINEAR ANALYSES EMPLOYING ONLY DISPLACEMENT DEGREES OF FREEDOM , 1998 .

[89]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[90]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[91]  M. Pauly,et al.  Projective Dynamics: Fusing Constraint Projections for Fast Simulation , 2023 .

[92]  Timothy R. Langlois,et al.  Incremental Potential Contact: Intersection- and Inversion-free, Large-Deformation Dynamics , 2020 .

[93]  Ming C. Lin,et al.  Differentiable Cloth Simulation for Inverse Problems , 2019, NeurIPS.

[94]  Min Tang,et al.  I-cloth , 2018, ACM Trans. Graph..

[95]  David Clyde,et al.  Numerical Subdivision Surfaces for Simulation and Data Driven Modeling of Woven Cloth , 2017 .

[96]  Jan Bender,et al.  Position-Based Simulation Methods in Computer Graphics , 2015, Eurographics.

[97]  Arjan Kuijper,et al.  Multilevel Cloth Simulation using GPU Surface Sampling , 2013, VRIPHYS.

[98]  M. A. Otaduy,et al.  Anisotropic Strain Limiting , 2013 .

[99]  Tae-Yong Kim,et al.  Fast Simulation of Inextensible Hair and Fur , 2012, VRIPHYS.

[100]  Xavier Provot,et al.  Collision and self-collision handling in cloth model dedicated to design garments , 1997, Computer Animation and Simulation.

[101]  Brian Mirtich,et al.  Impulse-based dynamic simulation of rigid body systems , 1996 .

[102]  Xavier Provot,et al.  Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior , 1995 .