Angiotensin Analogs with Divergent Bias Stabilize Distinct Receptor Conformations

[1]  A. Kruse,et al.  Distinctive Activation Mechanism for Angiotensin Receptor Revealed by a Synthetic Nanobody , 2019, Cell.

[2]  Naomi R. Latorraca,et al.  Molecular mechanism of GPCR-mediated arrestin activation , 2018, Nature.

[3]  A. Kruse,et al.  Sortase ligation enables homogeneous GPCR phosphorylation to reveal diversity in β-arrestin coupling , 2018, Proceedings of the National Academy of Sciences.

[4]  W. Baumeister,et al.  Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor–Gs complex , 2018, Nature.

[5]  M. Caron,et al.  The dopamine D2 receptor can directly recruit and activate GRK2 without G protein activation , 2018, The Journal of Biological Chemistry.

[6]  Alexander S. Rose,et al.  The arrestin-1 finger loop interacts with two distinct conformations of active rhodopsin , 2018, The Journal of Biological Chemistry.

[7]  A. R. Miller,et al.  Structural basis for GPR40 allosteric agonism and incretin stimulation , 2018, Nature Communications.

[8]  P. Ponikowski,et al.  Relationship between baseline systolic blood pressure and long-term outcomes in acute heart failure patients treated with TRV027: an exploratory subgroup analysis of BLAST-AHF , 2018, Clinical Research in Cardiology.

[9]  C. Tate,et al.  Insight into partial agonism by observing multiple equilibria for ligand-bound and Gs-mimetic nanobody-bound β1-adrenergic receptor , 2017, Nature Communications.

[10]  A. Kruse,et al.  Structural Basis for G Protein-Coupled Receptor Activation. , 2017, Biochemistry.

[11]  Arthur Christopoulos,et al.  A kinetic view of GPCR allostery and biased agonism. , 2017, Nature chemical biology.

[12]  Jonathan A. Javitch,et al.  Single-molecule analysis of ligand efficacy in β2AR-G protein activation , 2017, Nature.

[13]  S. Sligar,et al.  Conformational equilibria of light-activated rhodopsin in nanodiscs , 2017, Proceedings of the National Academy of Sciences.

[14]  D. Devost,et al.  Conformational Profiling of the AT1 Angiotensin II Receptor Reflects Biased Agonism, G Protein Coupling, and Cellular Context* , 2017, The Journal of Biological Chemistry.

[15]  D. E. Nichols,et al.  Crystal Structure of an LSD-Bound Human Serotonin Receptor , 2017, Cell.

[16]  B. Russell,et al.  Long-Term Biased &bgr;-Arrestin Signaling Improves Cardiac Structure and Function in Dilated Cardiomyopathy , 2017, Circulation.

[17]  Naomi R. Latorraca,et al.  GPCR Dynamics: Structures in Motion. , 2017, Chemical reviews.

[18]  Aidin R. Balo,et al.  Toward Precise Interpretation of DEER-Based Distance Distributions: Insights from Structural Characterization of V1 Spin-Labeled Side Chains. , 2016, Biochemistry.

[19]  M. Zimmer,et al.  Activation of the A2A adenosine G-protein-coupled receptor by conformational selection , 2016, Nature.

[20]  L. Bohn,et al.  Biased agonism: An emerging paradigm in GPCR drug discovery. , 2016, Bioorganic & medicinal chemistry letters.

[21]  I. Shimada,et al.  Identification of a Conformational Equilibrium That Determines the Efficacy and Functional Selectivity of the μ-Opioid Receptor , 2015, Angewandte Chemie.

[22]  T. S. Kobilka,et al.  Structural Insights into the Dynamic Process of β2-Adrenergic Receptor Signaling , 2015, Cell.

[23]  Aashish Manglik,et al.  Propagation of conformational changes during μ-opioid receptor activation , 2015, Nature.

[24]  D. Farrens,et al.  Structural dynamics and energetics underlying allosteric inactivation of the cannabinoid receptor CB1 , 2015, Proceedings of the National Academy of Sciences.

[25]  R. Leduc,et al.  Characterization of Angiotensin II Molecular Determinants Involved in AT1 Receptor Functional Selectivity , 2015, Molecular Pharmacology.

[26]  Sébastien Boutet,et al.  Structure of the Angiotensin Receptor Revealed by Serial Femtosecond Crystallography , 2015, Cell.

[27]  Alexander S. Rose,et al.  NGL Viewer: a web application for molecular visualization , 2015, Nucleic Acids Res..

[28]  A. Roitberg,et al.  Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. , 2015, Journal of chemical theory and computation.

[29]  Garth J. Williams,et al.  Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser , 2014, Nature.

[30]  J. Qian,et al.  Visualization of arrestin recruitment by a G Protein-Coupled Receptor , 2014, Nature.

[31]  Ryan T. Strachan,et al.  Divergent Transducer-specific Molecular Efficacies Generate Biased Agonism at a G Protein-coupled Receptor (GPCR)* , 2014, The Journal of Biological Chemistry.

[32]  Jing Huang,et al.  CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data , 2013, J. Comput. Chem..

[33]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. , 2013, Journal of chemical theory and computation.

[34]  C. Altenbach,et al.  Structure and dynamics of an imidazoline nitroxide side chain with strongly hindered internal motion in proteins. , 2013, Journal of magnetic resonance.

[35]  R. Lefkowitz,et al.  A brief history of G-protein coupled receptors (Nobel Lecture). , 2013, Angewandte Chemie.

[36]  R. Stevens,et al.  Structural Features for Functional Selectivity at Serotonin Receptors , 2013, Science.

[37]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing , 2012, J. Chem. Inf. Model..

[38]  Eric Trinquet,et al.  Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy , 2012, Proceedings of the National Academy of Sciences.

[39]  Gunnar Jeschke,et al.  DEER distance measurements on proteins. , 2012, Annual review of physical chemistry.

[40]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born , 2012, Journal of chemical theory and computation.

[41]  Kurt Wüthrich,et al.  Biased Signaling Pathways in β2-Adrenergic Receptor Characterized by 19F-NMR , 2012, Science.

[42]  Albert C. Pan,et al.  Activation mechanism of the β2-adrenergic receptor , 2011, Proceedings of the National Academy of Sciences.

[43]  Kunhong Xiao,et al.  Multiple ligand-specific conformations of the β2-adrenergic receptor. , 2011, Nature chemical biology.

[44]  Sudarshan Rajagopal,et al.  Quantifying Ligand Bias at Seven-Transmembrane Receptors , 2011, Molecular Pharmacology.

[45]  VINCENT ZOETE,et al.  SwissParam: A fast force field generation tool for small organic molecules , 2011, J. Comput. Chem..

[46]  Gunnar Jeschke,et al.  Rotamer libraries of spin labelled cysteines for protein studies. , 2011, Physical chemistry chemical physics : PCCP.

[47]  Lisa Nguyen,et al.  Selectively Engaging β-Arrestins at the Angiotensin II Type 1 Receptor Reduces Blood Pressure and Increases Cardiac Performance , 2010, Journal of Pharmacology and Experimental Therapeutics.

[48]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[49]  G. Vauquelin,et al.  Sartan–AT1 receptor interactions: In vitro evidence for insurmountable antagonism and inverse agonism , 2009, Molecular and Cellular Endocrinology.

[50]  U. Zabel,et al.  Fluorescence Resonance Energy Transfer Analysis of α2a-Adrenergic Receptor Activation Reveals Distinct Agonist-Specific Conformational Changes , 2009, Molecular Pharmacology.

[51]  C. Altenbach,et al.  High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation , 2008, Proceedings of the National Academy of Sciences.

[52]  R. Zare,et al.  Structure and Conformational Changes in the C-terminal Domain of the β2-Adrenoceptor , 2007, Journal of Biological Chemistry.

[53]  J. Violin,et al.  β-Arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes , 2006, Proceedings of the National Academy of Sciences.

[54]  C. Altenbach,et al.  Conformational states and dynamics of rhodopsin in micelles and bilayers. , 2006, Biochemistry.

[55]  Andrei L. Lomize,et al.  OPM: Orientations of Proteins in Membranes database , 2006, Bioinform..

[56]  S. Ball,et al.  Constitutive activity of human angiotensin II type-1 receptors by Gq overexpression. , 2005, Biochemical and biophysical research communications.

[57]  Philip J. Reeves,et al.  Structure and function in rhodopsin: A tetracycline-inducible system in stable mammalian cell lines for high-level expression of opsin mutants , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[58]  M. Lew,et al.  Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. , 2002, Molecular pharmacology.

[59]  M. Lohse,et al.  Differential Conformational Requirements for Activation of G Proteins and the Regulatory Proteins Arrestin and G Protein-coupled Receptor Kinase in the G Protein-coupled Receptor for Parathyroid Hormone (PTH)/PTH-related Protein* , 2001, The Journal of Biological Chemistry.

[60]  P Ghanouni,et al.  Agonist-induced conformational changes in the G-protein-coupling domain of the β2 adrenergic receptor , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[61]  P Ghanouni,et al.  The effect of pH on beta(2) adrenoceptor function. Evidence for protonation-dependent activation. , 2000, The Journal of biological chemistry.

[62]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[63]  S. Karnik,et al.  The Docking of Arg2 of Angiotensin II with Asp281 of AT1 Receptor Is Essential for Full Agonism (*) , 1995, The Journal of Biological Chemistry.

[64]  R. Graham,et al.  Tetrazole and Carboxylate Groups of Angiotensin Receptor Antagonists Bind to the Same Subsite by Different Mechanisms (*) , 1995, The Journal of Biological Chemistry.

[65]  P. Paatero,et al.  Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .

[66]  K. Hofmann,et al.  Interaction between photoactivated rhodopsin and its kinase: stability and kinetics of complex formation. , 1993, Biochemistry.

[67]  J. B. Higgins,et al.  Role of beta gamma subunits of G proteins in targeting the beta-adrenergic receptor kinase to membrane-bound receptors. , 1992, Science.

[68]  K. Lintner,et al.  Studies on angiotensin II and analogs: impact of substitution in position 8 on conformation and activity. , 1985, Proceedings of the National Academy of Sciences of the United States of America.