Void Probabilities and Cauchy–Schwarz Divergence for Generalized Labeled Multi-Bernoulli Models

The generalized labeled multi-Bernoulli (GLMB) is a family of tractable models that alleviates the limitations of the Poisson family in dynamic Bayesian inference of point processes. In this paper, we derive closed form expressions for the void probability functional and the Cauchy–Schwarz divergence for GLMBs. The proposed analytic void probability functional is a necessary and sufficient statistic that uniquely characterizes a GLMB, while the proposed analytic Cauchy–Schwarz divergence provides a tractable measure of similarity between GLMBs. We demonstrate the use of both results on a partially observed Markov decision process for GLMBs, with Cauchy–Schwarz divergence based reward, and void probability constraint.

[1]  Ba-Ngu Vo,et al.  AAS 15-413 A LABELED MULTI-BERNOULLI FILTER FOR SPACE OBJECT TRACKING , 2015 .

[2]  Ronald P. S. Mahler,et al.  Advances in Statistical Multisource-Multitarget Information Fusion , 2014 .

[3]  Ba-Ngu Vo,et al.  An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter , 2016, IEEE Transactions on Signal Processing.

[4]  Klaus C. J. Dietmayer,et al.  Autonomous driving at Ulm University: A modular, robust, and sensor-independent fusion approach , 2015, 2015 IEEE Intelligent Vehicles Symposium (IV).

[5]  R. Mahler,et al.  Objective functions for bayesian control-theoretic sensor management, 1: multitarget first-moment approximation , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[6]  Stephan Reuter,et al.  Multi-object tracking using random finite sets , 2014 .

[7]  D. Stoyan,et al.  Recent applications of point process methods in forestry statistics , 2000 .

[8]  Marco Lops,et al.  Multiuser Detection in a Dynamic Environment– Part I: User Identification and Data Detection , 2007, IEEE Transactions on Information Theory.

[9]  Alexei Makarenko,et al.  Information-theoretic coordinated control of multiple sensor platforms , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[10]  Ba-Ngu Vo,et al.  The Cauchy-Schwarz divergence for poisson point processes , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[11]  Ba-Tuong Vo,et al.  Sensor management for multi-target tracking via multi-Bernoulli filtering , 2013, Autom..

[12]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[13]  G. Monahan State of the Art—A Survey of Partially Observable Markov Decision Processes: Theory, Models, and Algorithms , 1982 .

[14]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter , 2013, IEEE Transactions on Signal Processing.

[15]  Jeffrey G. Andrews,et al.  Stochastic geometry and random graphs for the analysis and design of wireless networks , 2009, IEEE Journal on Selected Areas in Communications.

[16]  Klaus C. J. Dietmayer,et al.  The Labeled Multi-Bernoulli SLAM Filter , 2015, IEEE Signal Processing Letters.

[17]  Ba-Ngu Vo,et al.  A Note on the Reward Function for PHD Filters with Sensor Control , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[18]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[19]  Alfred O. Hero,et al.  Sensor management using an active sensing approach , 2005, Signal Process..

[20]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[21]  Ümit Özgüner,et al.  Motion planning for multitarget surveillance with mobile sensor agents , 2005, IEEE Transactions on Robotics.

[22]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[23]  Alireza Bab-Hadiashar,et al.  Sensor Control for Selective Object Tracking Using Labeled Multi-Bernoulli Filter , 2018, 2018 21st International Conference on Information Fusion (FUSION).

[24]  Ronald Mahler,et al.  MULTITARGET SENSOR MANAGEMENT OF DISPERSED MOBILE SENSORS , 2004 .

[25]  Ba-Ngu Vo,et al.  A Random-Finite-Set Approach to Bayesian SLAM , 2011, IEEE Transactions on Robotics.

[26]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[27]  T. Berger,et al.  General methodology for nonlinear modeling of neural systems with Poisson point-process inputs. , 2005, Mathematical biosciences.

[28]  Robin J. Evans,et al.  Hidden Markov model multiarm bandits: a methodology for beam scheduling in multitarget tracking , 2001, IEEE Trans. Signal Process..

[29]  Joaquim Salvi,et al.  SLAM with SC-PHD Filters: An Underwater Vehicle Application , 2014, IEEE Robotics & Automation Magazine.

[30]  Robert Jenssen,et al.  The Cauchy-Schwarz divergence and Parzen windowing: Connections to graph theory and Mercer kernels , 2006, J. Frankl. Inst..

[31]  L. J. Thomas,et al.  A Matheematical Model for Positron-Emission Tomography Systems Having Time-of-Flight Measurements , 1981, IEEE Transactions on Nuclear Science.

[32]  A. Baddeley,et al.  Stochastic Geometry: Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 13-18, 2004 , 2006 .

[33]  Robert Jenssen,et al.  Optimizing the Cauchy-Schwarz PDF Distance for Information Theoretic, Non-parametric Clustering , 2005, EMMCVPR.

[34]  Alireza Bab-Hadiashar,et al.  Sensor control for multi-object tracking using labeled multi-Bernoulli filter , 2015, 17th International Conference on Information Fusion (FUSION).

[35]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[36]  David Suter,et al.  Visual tracking of numerous targets via multi-Bernoulli filtering of image data , 2012, Pattern Recognit..

[37]  Ronald Cools,et al.  Algorithm 764: Cubpack++: a C++ package for automatic two-dimensional cubature , 1994, TOMS.

[38]  Peter Willett,et al.  Tracking considerations in selection of radar waveform for range and range-rate measurements , 2002 .

[39]  Jonathan P. How,et al.  An online algorithm for constrained POMDPs , 2010, 2010 IEEE International Conference on Robotics and Automation.

[40]  Du Yong Kim,et al.  A Particle Multi-Target Tracker for Superpositional Measurements Using Labeled Random Finite Sets , 2015, IEEE Transactions on Signal Processing.

[41]  Robin J. Evans,et al.  Optimal waveform selection for tracking systems , 1994, IEEE Trans. Inf. Theory.

[42]  G. Matheron Random Sets and Integral Geometry , 1976 .

[43]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[44]  Maruthi R. Akella,et al.  Probability of Collision Between Space Objects , 2000 .

[45]  Ba-Ngu Vo,et al.  Sensor control for multi-object state-space estimation using random finite sets , 2010, Autom..

[46]  Ba-Ngu Vo,et al.  Sensor control for multi-target tracking using Cauchy-Schwarz divergence , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[47]  Marco Lops,et al.  Multiuser Detection in a Dynamic Environment— Part II: Joint User Identification and Parameter Estimation , 2009, IEEE Transactions on Information Theory.

[48]  Y. Ogata Seismicity Analysis through Point-process Modeling: A Review , 1999 .

[49]  Y. Bar-Shalom,et al.  Multisensor resource deployment using posterior Cramer-Rao bounds , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[50]  Robin J. Evans,et al.  Simulation-Based Optimal Sensor Scheduling with Application to Observer Trajectory Planning , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[51]  Ba-Ngu Vo,et al.  Challenges of multi-target tracking for space situational awareness , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[52]  Y. Oshman,et al.  Optimization of observer trajectories for bearings-only target localization , 1999 .

[53]  George E. Monahan,et al.  A Survey of Partially Observable Markov Decision Processes: Theory, Models, and Algorithms , 2007 .

[54]  Klaus C. J. Dietmayer,et al.  The Labeled Multi-Bernoulli Filter , 2014, IEEE Transactions on Signal Processing.

[55]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[56]  Michael Anthony Beard Estimation and control of multi-object systems with high-fidenlity sensor models: A labelled random finite set approach , 2016 .

[57]  W. Lovejoy A survey of algorithmic methods for partially observed Markov decision processes , 1991 .

[58]  A. Baddeley,et al.  Stochastic geometry models in high-level vision , 1993 .

[59]  Ronald P. S. Mahler,et al.  Global posterior densities for sensor management , 1998, Defense, Security, and Sensing.

[60]  Martin Haenggi,et al.  On distances in uniformly random networks , 2005, IEEE Transactions on Information Theory.

[61]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[62]  Ba-Ngu Vo,et al.  Generalized Labeled Multi-Bernoulli Approximation of Multi-Object Densities , 2014, IEEE Transactions on Signal Processing.

[63]  Mike West,et al.  Spatial Mixture Modelling for Unobserved Point Processes: Examples in Immunofluorescence Histology. , 2009, Bayesian analysis.

[64]  François Baccelli,et al.  Stochastic geometry and architecture of communication networks , 1997, Telecommun. Syst..

[65]  Lawrence Carin,et al.  Stochastic Control Theory for Sensor Management , 2008 .

[66]  R. Tharmarasa,et al.  PCRLB-based multisensor array management for multitarget tracking , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[67]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[68]  J. Møller,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2003 .

[69]  Ba-Ngu Vo,et al.  Bayesian Multi-Target Tracking With Merged Measurements Using Labelled Random Finite Sets , 2015, IEEE Transactions on Signal Processing.

[70]  Vikram Krishnamurthy,et al.  Algorithms for optimal scheduling and management of hidden Markov model sensors , 2002, IEEE Trans. Signal Process..

[71]  Ba-Ngu Vo,et al.  On performance evaluation of multi-object filters , 2008, 2008 11th International Conference on Information Fusion.

[72]  Richard D. Braatz,et al.  Piecewise Linear Dynamic Programming for Constrained POMDPs , 2008, AAAI.