Petrophysical data prediction from seismic attributes using committee fuzzy inference system

This study presents an intelligent model based on fuzzy systems for making a quantitative formulation between seismic attributes and petrophysical data. The proposed methodology comprises two major steps. Firstly, the petrophysical data, including water saturation (S"w) and porosity, are predicted from seismic attributes using various fuzzy inference systems (FISs), including Sugeno (SFIS), Mamdani (MFIS) and Larsen (LFIS). Secondly, a committee fuzzy inference system (CFIS) is constructed using a hybrid genetic algorithms-pattern search (GA-PS) technique. The inputs of the CFIS model are the outputs and averages of the FIS petrophysical data. The methodology is illustrated using 3D seismic and petrophysical data of 11 wells of an Iranian offshore oil field in the Persian Gulf. The performance of the CFIS model is compared with a probabilistic neural network (PNN). The results show that the CFIS method performed better than neural network, the best individual fuzzy model and a simple averaging method.

[1]  Muhammad M. Saggaf,et al.  A fuzzy logic approach for the estimation of facies from wire-line logs , 2003 .

[2]  Shankar Chatterjee,et al.  Applications of clustering in exploration seismology , 1984 .

[3]  Shahab D. Mohaghegh,et al.  Virtual-Intelligence Applications in Petroleum Engineering: Part 1—Artificial Neural Networks , 2000 .

[4]  E. H. Mamdani,et al.  Advances in the linguistic synthesis of fuzzy controllers , 1976 .

[5]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[6]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[7]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[8]  W. W. Weiss,et al.  Using Artificial Intelligence to Corellate Multiple Seismic Attributes to Reservoir Properties , 1999 .

[9]  Kwang Hyung Lee,et al.  First Course on Fuzzy Theory and Applications , 2005, Advances in Soft Computing.

[10]  John Quirein,et al.  Use of multiattribute transforms to predict log properties from seismic data , 2001 .

[11]  Omar M. Al-Jarrah,et al.  Recognition of gestures in Arabic sign language using neuro-fuzzy systems , 2001, Artif. Intell..

[12]  Jong-Se Lim,et al.  Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea , 2005 .

[13]  Didier Dubois,et al.  Fuzzy information engineering: a guided tour of applications , 1997 .

[14]  Masoud Nikravesh,et al.  Introduction: Field Applications of Intelligent Computing Techniques , 2001 .

[15]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..

[16]  E. H. Mamdani,et al.  Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis , 1976, IEEE Transactions on Computers.

[17]  Masoud Nikravesh,et al.  Mining and fusion of petroleum data with fuzzy logic and neural network agents , 2001 .

[18]  Mohammad Reza Kamali,et al.  Total organic carbon content determined from well logs using ΔLogR and Neuro Fuzzy techniques , 2004 .

[19]  S. Sumathi,et al.  Applications of Fuzzy Logic , 2007 .

[20]  Brian Russell,et al.  Neural networks and AVO , 2002 .

[21]  Paul Meldahl,et al.  Identifying faults and gas chimneys using multiattributes and neural networks , 2001 .

[22]  E. Baysal,et al.  Seismic attributes revisited , 1994 .

[23]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[24]  Daniel P. Hampson,et al.  Application of the radial basis function neural network to the prediction of log properties from seismic attributes , 2003 .

[25]  P. Martin Larsen,et al.  Industrial applications of fuzzy logic control , 1980 .

[26]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[27]  Andrei Popa,et al.  Reducing the Cost of Field-Scale Log Analysis Using Virtual Intelligence Techniques , 1999 .

[28]  Seyed Ali Moallemi,et al.  A fuzzy logic approach for estimation of permeability and rock type from conventional well log data: an example from the Kangan reservoir in the Iran Offshore Gas Field , 2006 .

[29]  M. Rezaee,et al.  Prediction of shear wave velocity from petrophysical data utilizing intelligent systems: An example from a sandstone reservoir of Carnarvon Basin, Australia , 2007 .

[30]  Chang-Hsu Chen,et al.  A committee machine with empirical formulas for permeability prediction , 2006, Comput. Geosci..

[31]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[32]  B. Russell,et al.  The application of multivariate statistics and neural networks to the prediction of reservoir parameters using seismic attributes , 2004 .

[33]  Stephen L. Chiu,et al.  Extracting Fuzzy Rules from Data for Function Approximation and Pattern Classification , 2000 .

[34]  H. Trappe,et al.  Using neural networks to predict porosity thickness from 3D seismic , 2000 .

[35]  Timothy Masters Signal and Image Processing with Neural Networks: A C++ Sourcebook , 1994 .

[36]  Masoud Nikravesh,et al.  Soft computing: tools for intelligent reservoir characterization (IRESC) and optimum well placement (OWP) , 2001 .

[37]  Masoud Nikravesh,et al.  Intelligent reservoir characterization (IRESC) , 2003, IEEE International Conference on Industrial Informatics, 2003. INDIN 2003. Proceedings..

[38]  Quincy Chen,et al.  Seismic attribute technology for reservoir forecasting and monitoring , 1997 .