Global Smooth Ion Dynamics in the Euler-Poisson System

A fundamental two-fluid model for describing dynamics of a plasma is the Euler-Poisson system, in which compressible ion and electron fluids interact with their self-consistent electrostatic force. Global smooth electron dynamics were constructed in Guo (Commun Math Phys 195:249–265, 1998) due to dispersive effect of the electric field. In this paper, we construct global smooth irrotational solutions with small amplitude for ion dynamics in the Euler-Poisson system.

[1]  Tosio Kato,et al.  The Cauchy problem for quasi-linear symmetric hyperbolic systems , 1975 .

[2]  Y. Meyer,et al.  Commutateurs d'intégrales singulières et opérateurs multilinéaires , 1978 .

[3]  F. John Plane Waves and Spherical Means: Applied To Partial Differential Equations , 1981 .

[4]  Jalal Shatah,et al.  Normal forms and quadratic nonlinear Klein‐Gordon equations , 1985 .

[5]  Thomas C. Sideris,et al.  Formation of singularities in three-dimensional compressible fluids , 1985 .

[6]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[7]  Yan Guo,et al.  Smooth Irrotational Flows in the Large to the Euler–Poisson System in R3+1 , 1998 .

[8]  Yan Guo,et al.  Formation of singularities in relativistic fluid dynamics and in spherically symmetric plasma dynamics , 1998, math/9807136.

[9]  Joseph W. Jerome,et al.  Compressible Euler-Maxwell equations , 2000 .

[10]  E. Grenier,et al.  Quasineutral limit of an euler-poisson system arising from plasma physics , 2000 .

[11]  Dehua Wang Global solution to the equations of viscous gas flows , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[12]  Eitan Tadmor,et al.  Spectral Dynamics of the Velocity Gradient Field¶in Restricted Flows , 2002 .

[13]  A. Siamj. CRITICAL THRESHOLDS IN 2D RESTRICTED EULER–POISSON EQUATIONS∗ , 2002 .

[14]  Hailiang Liu,et al.  Critical Thresholds in 2D Restricted Euler-Poisson Equations , 2003, SIAM J. Appl. Math..

[15]  Yue-Jun Peng,et al.  Boundary layers and quasi-neutral limit in steady state Euler–Poisson equations for potential flows , 2004 .

[16]  Multi-parameter paraproducts , 2004, math/0411607.

[17]  B. Texier WKB asymptotics for the Euler–Maxwell equations , 2005 .

[18]  M. Slemrod,et al.  A Geometric Level-Set Formulation of a Plasma-Sheath Interface , 2004, math-ph/0409040.

[19]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[20]  Paraproducts with flag singularities I. A case study , 2006, math/0601474.

[21]  Dehua Wang,et al.  Large BV solutions to the compressible isothermal Euler–Poisson equations with spherical symmetry , 2006 .

[22]  M. Slemrod,et al.  SELF-SIMILAR ISOTHERMAL IRROTATIONAL MOTION FOR THE EULER, EULER–POISSON SYSTEMS AND THE FORMATION OF THE PLASMA SHEATH , 2006 .

[23]  K. Nakanishi,et al.  Global Dispersive Solutions for the Gross–Pitaevskii Equation in Two and Three Dimensions , 2006, math/0605655.

[24]  Yue-Jun Peng,et al.  Convergence of Compressible Euler-Maxwell Equations to Compressible Euler-Poisson Equations* , 2007 .

[25]  U. Cnrs Convergence of Compressible Euler-Maxwell Equations to Compressible Euler-Poisson Equations , 2007 .

[26]  Benjamin Texier,et al.  Derivation of the Zakharov Equations , 2006, math/0603092.

[27]  K. Nakanishi,et al.  Scattering theory for the Gross-Pitaevskii equation in three dimensions , 2008, 0803.3208.

[28]  Lizhong Peng,et al.  Decay estimates for a class of wave equations , 2008, 0802.3167.

[29]  Nader Masmoudi,et al.  Global Solutions for 3D Quadratic Schrödinger Equations , 2008, 1001.5158.

[30]  P. Germain,et al.  Global solutions for the gravity water waves equation in dimension 3 , 2009, 0906.5343.

[31]  Nader Masmoudi,et al.  Global solutions for the gravity water waves equation in dimension 3 , 2009 .

[32]  Nader Masmoudi,et al.  Global solutions for 2D quadratic Schrödinger equations , 2010 .