Global Smooth Ion Dynamics in the Euler-Poisson System
暂无分享,去创建一个
[1] Tosio Kato,et al. The Cauchy problem for quasi-linear symmetric hyperbolic systems , 1975 .
[2] Y. Meyer,et al. Commutateurs d'intégrales singulières et opérateurs multilinéaires , 1978 .
[3] F. John. Plane Waves and Spherical Means: Applied To Partial Differential Equations , 1981 .
[4] Jalal Shatah,et al. Normal forms and quadratic nonlinear Klein‐Gordon equations , 1985 .
[5] Thomas C. Sideris,et al. Formation of singularities in three-dimensional compressible fluids , 1985 .
[6] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[7] Yan Guo,et al. Smooth Irrotational Flows in the Large to the Euler–Poisson System in R3+1 , 1998 .
[8] Yan Guo,et al. Formation of singularities in relativistic fluid dynamics and in spherically symmetric plasma dynamics , 1998, math/9807136.
[9] Joseph W. Jerome,et al. Compressible Euler-Maxwell equations , 2000 .
[10] E. Grenier,et al. Quasineutral limit of an euler-poisson system arising from plasma physics , 2000 .
[11] Dehua Wang. Global solution to the equations of viscous gas flows , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[12] Eitan Tadmor,et al. Spectral Dynamics of the Velocity Gradient Field¶in Restricted Flows , 2002 .
[13] A. Siamj.. CRITICAL THRESHOLDS IN 2D RESTRICTED EULER–POISSON EQUATIONS∗ , 2002 .
[14] Hailiang Liu,et al. Critical Thresholds in 2D Restricted Euler-Poisson Equations , 2003, SIAM J. Appl. Math..
[15] Yue-Jun Peng,et al. Boundary layers and quasi-neutral limit in steady state Euler–Poisson equations for potential flows , 2004 .
[16] Multi-parameter paraproducts , 2004, math/0411607.
[17] B. Texier. WKB asymptotics for the Euler–Maxwell equations , 2005 .
[18] M. Slemrod,et al. A Geometric Level-Set Formulation of a Plasma-Sheath Interface , 2004, math-ph/0409040.
[19] T. Tao. Nonlinear dispersive equations : local and global analysis , 2006 .
[20] Paraproducts with flag singularities I. A case study , 2006, math/0601474.
[21] Dehua Wang,et al. Large BV solutions to the compressible isothermal Euler–Poisson equations with spherical symmetry , 2006 .
[22] M. Slemrod,et al. SELF-SIMILAR ISOTHERMAL IRROTATIONAL MOTION FOR THE EULER, EULER–POISSON SYSTEMS AND THE FORMATION OF THE PLASMA SHEATH , 2006 .
[23] K. Nakanishi,et al. Global Dispersive Solutions for the Gross–Pitaevskii Equation in Two and Three Dimensions , 2006, math/0605655.
[24] Yue-Jun Peng,et al. Convergence of Compressible Euler-Maxwell Equations to Compressible Euler-Poisson Equations* , 2007 .
[25] U. Cnrs. Convergence of Compressible Euler-Maxwell Equations to Compressible Euler-Poisson Equations , 2007 .
[26] Benjamin Texier,et al. Derivation of the Zakharov Equations , 2006, math/0603092.
[27] K. Nakanishi,et al. Scattering theory for the Gross-Pitaevskii equation in three dimensions , 2008, 0803.3208.
[28] Lizhong Peng,et al. Decay estimates for a class of wave equations , 2008, 0802.3167.
[29] Nader Masmoudi,et al. Global Solutions for 3D Quadratic Schrödinger Equations , 2008, 1001.5158.
[30] P. Germain,et al. Global solutions for the gravity water waves equation in dimension 3 , 2009, 0906.5343.
[31] Nader Masmoudi,et al. Global solutions for the gravity water waves equation in dimension 3 , 2009 .
[32] Nader Masmoudi,et al. Global solutions for 2D quadratic Schrödinger equations , 2010 .